
Agilent VISA
User�s Guide
Manual Part Number: E2090-90040
Printed in U.S.A. E0801

Contents
Agilent VISA User�s Guide

Front Matter... 9
Notice .. 9
Warranty Information .. 9
U.S. Government Restricted Rights .. 9
Trademark Information ... 10
Printing History ... 10
Copyright Information ... 10

1. Introduction .. 11
What�s in This Guide?.. 13
VISA Overview... 14

Using VISA and SICL ... 14
VISA Support .. 15
VISA Documentation .. 16
Contacting Agilent .. 16

2. Building a VISA Application in Windows .. 17
Building a VISA Program (C/C++) ... 19

Compiling and Linking VISA Programs (C/C++) 19
Example VISA Program (C/C++) .. 21

Building a VISA Program (Visual Basic) 23
Visual Basic Programming Considerations 23
Example VISA Program (Visual Basic) 25

Logging Error Messages.. 29
Using the Event Viewer .. 29
Using the Message Viewer ... 29
Using the Debug Window ... 30

3. Building a VISA Application in HP-UX ... 31
Building a VISA Program in HP-UX ... 33

Example Source Code ... 33
Example Program Contents ... 34
Running the Example Program .. 34
Compiling and Linking a VISA Program 35
Logging Error Messages .. 35

Using Online Help.. 36
Using the HyperHelp Viewer .. 36
Using HP-UX Manual Pages .. 36
Contents 3

4. Programming with VISA ..37
VISA Resources and Attributes ..39

VISA Resources ..39
VISA Attributes ..40

Using Sessions...41
Including the VISA Declarations File (C/C++)41
Adding the visa32.bas File (Visual Basic)41
Opening a Session ..41
Addressing a Session ..44
Closing a Session ...46
Searching for Resources ...47

Sending I/O Commands ...49
Types of I/O ..49
Using Formatted I/O ..49
Using Non-Formatted I/O ..59

Using Events and Handlers ...62
Events and Attributes ..62
Using the Callback Method ...69
Using the Queuing Method ...77

Trapping Errors...82
Trapping Errors ...82
Exception Events ..83

Using Locks ...87

5. Programming via GPIB and VXI ..93
GPIB and VXI Interfaces Overview ..95

General Interface Information ...95
GPIB Interfaces Overview ...96
VXI Interfaces Overview ...98
GPIB-VXI Interfaces Overview ..100

Using High-Level Memory Functions ...102
Programming the Registers ..102
High-Level Memory Functions Examples104

Using Low-Level Memory Functions ...107
Programming the Registers ..107
Low-Level Memory Functions Examples109

Using Low/High-Level Memory I/O Methods112
Using Low-Level viPeek/viPoke .. 112
Using High-level viIn/viOut .. 113
Using High-level viMoveIn/viMoveOut 113
Contents 4

Using the Memory Access Resource... 117
Memory I/O Services .. 117
MEMACC Attribute Descriptions .. 120

Using VXI-Specific Attributes .. 123
Using the Map Address as a Pointer 123
Setting the VXI Trigger Line ... 125

6. Programming via LAN .. 127
LAN Interfaces Overview ... 129

LAN Hardware Architecture .. 129
LAN Software Architecture ... 131
LAN Client Interface Overview ... 133
VISA LAN Client Interface Overview 136
LAN Server Interface Overview .. 140

Communicating with GPIB Devices via LAN.............................. 141
Addressing a Session ... 141
Using Timeouts over LAN .. 143
LAN Signal Handling on HP-UX ... 145

7. VISA Language Reference .. 147
VISA Functions Overview .. 149

VISA Functions by Interface/Resource 149
VISA Functions by Type ... 153

viAssertIntrSignal ... 158
viAssertTrigger... 160
viAssertUtilSignal .. 163
viBufRead .. 165
viBufWrite .. 167
viClear.. 169
 viClose .. 171
viDisableEvent .. 173
viDiscardEvents ... 176
viEnableEvent ... 179
viEventHandler .. 183
viFindNext ... 188
viFindRsrc ... 189
viFlush ... 194
viGetAttribute .. 196
viGpibCommand .. 198
viGpibControlATN.. 200
viGpibControlREN ... 202
viGpibPassControl ... 204
viGpibSendIFC .. 206
viIn8, viIn16, and viIn32 .. 207
viInstallHandler .. 210
Contents 5

viLock ..212
viMapAddress...216
viMapTrigger...219
viMemAlloc ...221
viMemFree..223
viMove ..224
viMoveAsync ..227
viMoveIn8, viMoveIn16, and viMoveIn32231
viMoveOut8, viMoveOut16, and viMoveOut32234
viOpen ..237
viOpenDefaultRM ...241
viOut8, viOut16, and viOut32 ...243
viParseRsrc ..246
viPeek8, viPeek16, and viPeek32 ..248
viPoke8, viPoke16, and viPoke32 ..249
viPrintf ..250
viQueryf ..259
viRead ..261
viReadAsync...264
viReadSTB ...266
viReadToFile ..268
viScanf..271
viSetAttribute ..281
viSetBuf ..283
viSPrintf ..285
viSScanf ...287
viStatusDesc...289
viTerminate...290
viUninstallHandler...292
viUnlock..294
viUnmapAddress ..295
viUnmapTrigger ...296
viVPrintf ..298
viVQueryf..300
viVScanf ...302
viVSPrintf..304
viVSScanf ...306
viVxiCommandQuery..308
viWaitOnEvent..311
viWrite...317
viWriteAsync...319
viWriteFromFile ..321
Contents 6

A. VISA Library Information .. 323
VISA Type Definitions.. 325
VISA Error Codes .. 328

VISA Error Codes (Numerical) ... 328
VISA Error Codes (Alphabetical) .. 331
VISA Error Codes (by Function) ... 336

VISA Directories Information ... 368
Windows Directory Structure .. 368
Editing the VISA Configuration ... 370

B. VISA Resource Classes ... 373
Resource Classes Overview.. 375

Resource Classes vs. Interface Types 375
Interface Types vs. Resource Classes 376
Resource Class Descriptions ... 376

Instrument Control (INSTR) Resource....................................... 377
INSTR Resource Overview .. 377
INSTR Resource Attributes .. 378
INSTR Resource Attribute Descriptions 384
INSTR Resource Events .. 391
INSTR Resource Operations .. 393

Memory Access (MEMACC) Resource...................................... 395
MEMACC Resource Overview ... 395
MEMACC Resource Attributes ... 396
MEMACC Resource Attribute Descriptions 398
MEMACC Resource Events ... 400
MEMACC Resource Operations .. 401

GPIB Bus Interface (INTFC) Resource...................................... 402
INTFC Resource Overview .. 402
INTFC Resource Attributes .. 402
INTFC Resource Attribute Descriptions 404
INTFC Resource Events .. 406
INTFC Resource Operations .. 408

VXI Mainframe Backplane (BACKPLANE) Resource 409
BACKPLANE Resource Overview 409
BACKPLANE Resource Attributes 410
BACKPLANE Resource Attribute Descriptions 411
BACKPLANE Resource Events ... 412
BACKPLANE Resource Operations 412
Contents 7

Servant Device-Side (SERVANT) Resource413
SERVANT Resource Overview ...413
SERVANT Resource Attributes ..414
SERVANT Resource Attribute Descriptions415
SERVANT Resource Events ...417
SERVANT Resource Operations ..419

TCPIP Socket (SOCKET) Resource ..420
SOCKET Resource Overview ...420
SOCKET Resource Attributes ...420
SOCKET Resource Attribute Descriptions422
SOCKET Resource Event ...423
SOCKET Resource Operations ..424

Glossary ..425

Index ..431
Contents 8

Notice
The information contained in this document is subject to change without
notice.

Agilent Technologies shall not be liable for any errors contained in this
document. Agilent Technologies makes no warranties of any kind with
regard to this document, whether express or implied. Agilent Technologies
specifically disclaims the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for any
direct, indirect, special, incidental, or consequential damages, whether
based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information
A copy of the specific warranty terms applicable to your Agilent Technologies
product and replacement parts can be obtained from Agilent Technologies,
Inc.

U.S. Government Restricted Rights
The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as "commercial computer
software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-
7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial
item" as defined in FAR 2.101(a), or as "Restricted computer software" as
defined in FAR 52.227-19 (Jun 1987) (or any equivalent agency regulation
or contract clause), whichever is applicable. You have only those rights
provided for such Software and Documentation by the applicable FAR or
DFARS clause or the Agilent standard software agreement for the product
involved.
 9

Trademark Information
Microsoft®, Windows ® 95, Windows ® 98, Windows ® Me,
Windows ® 2000, and Windows NT® are U.S. registered trademarks of
Microsoft Corporation. All other brand and product names are trademarks
or registered trademarks of their respective companies.

Printing History
Edition 1 - May 1996
Edition 2 - September 1996
Edition 3 - February 1998
Edition 4 - July 2000
Edition 5 - August 2001

Copyright Information
Agilent Technologies VISA User�s Guide
Edition 5
Copyright © 1984 -1988 Sun Microsystems, Inc.
Copyright © 1996, 1998, 2000, 2001 Agilent Technologies, Inc.
All rights reserved.
10

1

Introduction
11

Introduction

This Agilent Technologies VISA User�s Guide describes the Agilent Virtual
Instrument Software Architecture (VISA) library and shows how to use it to
develop instrument drivers and I/O applications on Windows 95, Windows
98, Windows Me, Windows NT 4.0, and Windows 2000, and on HP-UX
version 10.20. This chapter includes:

� What�s in This Guide?
� VISA Overview

NOTE

Before you can use VISA, you must install and configure VISA on your
computer. See Agilent IO Libraries Installation and Configuration Guide
for Windows for installation on Windows systems. See Agilent IO
Libraries Installation and Configuration for HP-UX for installation on
HP-UX systems.

This guide shows programming techniques using C/C++ and Visual
Basic. Since VISA and SICL are different libraries, using VISA functions
and SICL functions in the same I/O application is not supported. Unless
indicated, Windows NT refers to Windows NT 4.0.
12 Introduction

Introduction
What�s in This Guide?
What�s in This Guide?
� Chapter 1 - Introduction describes the contents of this guide,

provides an overview of VISA, and shows how to contact Agilent
Technologies.

� Chapter 2 - Building a VISA Application in Windows describes how
to build a VISA application in a Windows environment. An example
program is provided to help you get started programming with VISA.

� Chapter 3 - Building a VISA Application in HP-UX describes how to
build a VISA application in the HP-UX environment. An example
program is provided to help you get started programming with VISA.

� Chapter 4 - Programming with VISA describes the basics of VISA
and lists some example programs. The chapter also includes
information on creating sessions, using formatted I/O, events, etc.

� Chapter 5 - Programming via GPIB and VXI gives guidelines to use
VISA to communicate over the GPIB, GPIB-VXI, and VXI interfaces
to instruments.

� Chapter 6 - Programming via LAN gives guidelines to use VISA to
communicate over a LAN (Local Area Network) to instruments.

� Chapter 7 - VISA Language Reference provides an alphabetical
reference of supported VISA functions.

� Appendix A - VISA Library Information lists VISA data types and
their definitions, VISA error codes, and VISA directory information.

� Appendix B - VISA Resource Classes describes the six VISA
Resource Classes, including attributes, events, and operations.

� Glossary includes a glossary of terms and their definitions.
Introduction 13

Introduction
VISA Overview
VISA Overview
VISA is a part of the Agilent IO Libraries. The Agilent IO Libraries consists
of two libraries: Agilent Virtual Instrument Software Architecture (VISA) and
Agilent Standard Instrument Control Library (SICL). This guide describes
VISA for supported Windows and HP-UX environments.

For information on using SICL in Windows, see the Agilent SICL User�s
Guide for Windows. For information on using SICL in HP-UX, see the
Agilent Standard Instrument Control Library User�s Guide for HP-UX. For
information on the Agilent IO Libraries, see the Agilent IO Libraries
Installation and Configuration Guide.

Using VISA and SICL
Agilent Virtual Instrument Software Architecture (VISA) is an IO library
designed according to the VXIplug&play System Alliance that allows
software developed from different vendors to run on the same system.

Use VISA if you want to use VXIplug&play instrument drivers in your
applications, or if you want the I/O applications or instrument drivers that
you develop to be compliant with VXIplug&play standards. If you are using
new instruments or are developing new I/O applications or instrument
drivers, we recommend you use Agilent VISA.

Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Agilent that is portable across many I/O interfaces and
systems. You can use Agilent SICL if you have been using SICL and
want to remain compatible with software currently implemented in SICL.
14 Introduction

Introduction
VISA Overview
VISA Support
Agilent VISA is an I/O library that can be used to develop I/O applications
and instrument drivers that comply with the VXIplug&play standards.
Applications and instrument drivers developed with VISA can execute on
VXIplug&play system frameworks that have the VISA I/O layer. Therefore,
software from different vendors can be used together on the same system.

VISA Support on
Windows

This 32-bit version of VISA is supported on Windows 95, Windows 98,
Windows Me, Windows NT, and Windows 2000. (Support for the 16-bit
version of VISA was removed in version H.01.00 of the Agilent IO Libraries.)
C, C++, and Visual Basic are supported on all these Windows versions.

For Windows, VISA is supported on the GPIB, VXI, GPIB-VXI, Serial
(RS-232), and LAN interfaces. VISA for the VXI interface on Windows NT
is shipped with the Agilent Embedded VXI Controller product only. LAN
support from within VISA occurs via an address translation such that a
GPIB interface can be accessed remotely over a computer network

VISA Support on
HP-UX

VISA is supported on the GPIB, VXI, GPIB-VXI, and LAN interfaces on
HP-UX version 10.20. LAN support from within VISA occurs via an address
translation such that a GPIB interface can be accessed remotely over a
computer network

VISA Users VISA has two specific types of users. The first type is the instrumentation
end user who wants to use VXIplug&play instrument drivers in his or her
applications. The second type of user is the instrument driver or I/O
application developer who wants to be compliant with VXIplug&play
standards.

Software development using VISA is intended for instrument I/O and
C/C++ or Visual Basic programmers who are familiar with the Windows 95,
Windows 98, Windows Me, Windows 2000, Windows NT, or HP-UX
environment. To perform VISA installation and configuration on Windows NT
or HP-UX, you must have system administration privileges on the Windows
NT system or super-user (root) privileges on the HP-UX system.
Introduction 15

Introduction
VISA Overview
VISA Documentation
This table shows associated documentation you can use when programming
with Agilent VISA in the Windows or HP-UX environment.

Contacting Agilent
� In the USA and Canada, you can reach Agilent Technologies at

these telephone numbers:

USA: 1-800-452-4844
Canada: 1-877-894-4414

� Outside the USA and Canada, contact your country�s Agilent support
organization. A list of contact information for other countries is
available on the Agilent web site:

http://www.agilent.com/find/assist

Agilent VISA Documentation

Document Description
Agilent IO Libraries Installation and
Configuration Guide for Windows

Shows how to install, configure, and maintain the Agilent IO
Libraries on Windows.

Agilent IO Libraries Installation and
Configuration Guide for HP-UX

Shows how to install, configure, and maintain the Agilent IO
Libraries on HP-UX.

VISA Online Help Information is provided in the form of Windows Help.

VISA Example Programs Example programs are provided online to help you develop
VISA applications.

VXIplug&play System Alliance VISA
Library Specification 4.3

Specifications for VISA.

IEEE Standard Codes, Formats,
Protocols, and Common Commands

ANSI/IEEE Standard 488.2-1992.

VXIbus Consortium specifications
(when using VISA over LAN)

TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification - VXI-11.1, Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3,
Rev. 1.0
16 Introduction

2

Building a VISA Application in
Windows
17

Building a VISA Application in Windows

This chapter gives guidelines to build a VISA application in a Windows
environment. The chapter contains the following sections:

� Building a VISA Program (C/C++)
� Building a VISA Program (Visual Basic)
� Logging Error Messages
18 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (C/C++)
Building a VISA Program (C/C++)
This section gives guidelines to build VISA programs using C/C++ language,
including:

� Compiling and Linking VISA Programs (C/C++)
� Example VISA Program (C/C++)

Compiling and Linking VISA Programs (C/C++)
This section provides a summary of important compiler-specific
considerations for several C/C++ compiler products when developing Win32
applications.

Linking to VISA
Libraries

Your application must link to one of the VISA import libraries as follows,
assuming default installation directories.

� VISA on Windows 95, Windows 98, or Windows Me:

C:\Program Files\VISA\WIN95\LIB\MSC\VISA32.LIB
(Microsoft compilers)
C:\Program Files\VISA\WIN95\LIB\BC\VISA32.LIB
(Borland compilers)

� VISA on Windows NT or Windows 2000:

C:\Program Files\VISA\WINNT\LIB\MSC\VISA32.LIB
(Microsoft compilers)
C:\Program Files\VISA\WINNT\LIB\BC\VISA32.LIB
(Borland compilers)

Microsoft Visual
C++ Version 6.0
Compilers

1 Select Project|Update All Dependencies from the menu.

2 Select Project|Settings from the menu and click the
C/C++ button.

3 Select Code Generation from the Category list box and
select Multi-Threaded using DLL from the Use Run-Time
Libraries list box. (VISA requires these definitions for Win32.)
Click OK to close the dialog boxes.
Chapter 2 19

Building a VISA Application in Windows
Building a VISA Program (C/C++)
4 Select Project | Settings from the menu. Click the Link
button and add visa32.lib to the Object/Library Modules list
box. Optionally, you may add the library directly to your project file.
Click OK to close the dialog boxes.

5 You may want to add the include file and library file search paths.
They are set by:

� Select Tools | Options from the menu.

� Click the Directories button to set the include file path.

� Select Include Files from the Show Directories For
list box.

� Click the Add button and type one of the following:
C:\Program Files\VISA\WIN95\INCLUDE OR
C:\Program Files\VISA\WINNT\INCLUDE.

6 Select Library Files from the Show Directories For
list box.

7 Click the Add button and type one of the following:
C:\Program Files\VISA\WIN95\LIB\MSC OR
C:\Program Files\VISA\WINNT\LIB\MSC

Borland C++
Version 4.0
Compilers

You may want to add the include file and library file search paths. They
are set under the Options|Project menu selection. Double-click
Directories from the Topics list box and add one of the following:

C:\Program Files\VISA\WIN95\INCLUDE
C:\Program Files\VISA\WIN95\LIB\BC

OR

C:\Program Files\VISA\WINNT\INCLUDE
C:\Program Files\VISA\WINNT\LIB\BC
20 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (C/C++)
Example VISA Program (C/C++)
This section lists an example program called idn that queries a GPIB
instrument for its identification string. This example assumes a Win32
Console Application using Microsoft or Borland C/C++ compilers on
Windows.

� For VISA on Windows 95, Windows 98, and Windows Me, the idn
example files are in \Program Files\VISA\WIN95\AGVISA\SAMPLES.

� For VISA on Windows NT or Windows 2000, the idn example files
are in \Program Files\VISA\WINNT\AGVISA\SAMPLES.

Example C/C++
Program Source
Code

The source file idn.c follows. An explanation of the various function calls in
the example is provided directly after the program listing. If the program runs
correctly, the following is an example of the output if connected to a 54601A
oscilloscope. If the program does not run, see the Event Viewer for a list
of run-time errors.

HEWLETT-PACKARD,54601A,0,1.7

/*idn.c
This example program queries a GPIB device for an
identification string and prints the results. Note
that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR",VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viPrintf(vi, "*RST\n");
/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");
Chapter 2 21

Building a VISA Application in Windows
Building a VISA Program (C/C++)
/* Read results */
viScanf(vi, "%t", buf);

/* Print results */
printf("Instrument identification string: %s\n", buf);

/* Close session */
viClose(vi);
viClose(defaultRM);}

Example C/C++
Program Contents

A summary of the VISA function calls used in the example C/C++ program
follows. For a more detailed explanation of VISA functionality, see Chapter
4 - Programming With VISA. See Chapter 7 - VISA Language Reference for
more detailed information on these VISA function calls.

Function(s) Description

visa.h This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

ViSession The ViSession is a VISA data type. Each object that will establish a
communication channel must be defined as ViSession.

viOpenDefaultRM You must first open a session with the default resource manager with the
viOpenDefaultRM function. This function will initialize the default
resource manager and return a pointer to that resource manager session.

viOpen This function establishes a communication channel with the device
specified. A session identifier that can be used with other VISA functions
is returned. This call must be made for each device you will be using.

viPrintf and
viScanf

These are the VISA formatted I/O functions that are patterned after those
used in the C programming language. The viPrintf call sends the
IEEE 488.2 *RST command to the instrument and puts it in a known state.
The viPrintf call is used again to query for the device identification
(*IDN?). The viScanf call is then used to read the results.

viClose This function must be used to close each session. When you close a
device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.
22 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)
Building a VISA Program (Visual Basic)
This section gives guidelines to build a VISA program in the Visual Basic
language, including:

� Visual Basic Programming Considerations
� Example VISA Program (Visual Basic)

Visual Basic Programming Considerations
Some considerations for programming in Visual Basic follow.

Required Module for
a Visual Basic VISA
Program

Before you can use VISA specific functions, your application must add the
visa32.bas VISA Visual Basic module found in one of the following
directories (assuming default installation directories). For Windows 2000/NT,
C:\Program Files\VISA\winnt\include\. For Windows 95/98/Me,
C:\Program Files\VISA\winnt\include\.

Installing the
visa32.bas File

To install visa32.bas:

1 Select Project | Add Module from the menu
2 Select the Existing tab
3 Browse and select the visa32.bas file from applicable directory
4 Click the Open button

VISA Limitations in
Visual Basic

VISA functions return a status code which indicates success or failure of the
function. The only indication of an error is the value of returned status code.
The VB Error variable is not set by any VISA function. Thus, you cannot use
the 'ON ERROR' construct in VB or the value of the VB Error variable to
catch VISA function errors.

VISA cannot callback to a VB function. Thus, you can only use the
VI_QUEUE mechanism in viEnableEvent. There is no way to install a
VISA event handler in VB.

VISA functions that take a variable number of parameters (viPrintf,
viScanf, viQueryf) are not callable from VB. Use the corresponding
viVPrintf, viVScanf and viVQueryf functions instead.

You cannot pass variables of type Variant to VISA functions. If you attempt
this, the Visual Basic program will probably crash with a 'General Protection
Fault' or an 'Access Violation'.
Chapter 2 23

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)
Format Conversion
Commands

The functions viVPrintf, viVscanf and viVqueryf can be called
from VB, but there are restrictions on the format conversions that can be
used. Only one format conversion command can be specified in a format
string (a format conversion command begins with the % character).

For example, the following is invalid:

status = viVPrintf(vi, "%lf%d" + Chr$(10), ...)

Instead, you must make one call for each format conversion command, as
shown in the following example:

status = viVPrintf(vi, "%lf" + Chr$(10), dbl_value)
status = viVPrintf(vi, "%d" + Chr$(10), int_value)

Numeric Arrays When reading to or writing from a numeric array, you must specify the first
element of a numeric array as the params parameter. This passes the
address of the first array element to the function. For example, the following
code declares an array of 50 floating point numbers and then calls
viVPrintf to write from the array.

Dim flt_array(50) As Double
status = viVPrintf(id, "%,50f", dbl_array(0))

Strings When reading in a string value with viVScanf or viVQueryf, you must
pass a fixed length string as the params parameter. To declare a fixed
length string, instead of using the normal variable length declaration:

Dim strVal as String

use the following declaration, where 40 is the fixed length.

Dim strVal as String * 40
24 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)
Example VISA Program (Visual Basic)
This section lists an example program called idn that queries a GPIB
instrument for its identification string. This example builds a Standard EXE
application for WIN32 programs using the Visual Basic 6.0 programming
language.

For VISA on Windows 95, Windows 98, or Windows Me, the idn example
files are in C:\Program Files\VISA\WIN95\AGVISA\SAMPLES\ vb\idn.
For VISA on Windows NT or Windows 2000, the idn example files are in
C:\Program Files\VISA\WINNT\AGVISA\SAMPLES\vb\idn.

Steps to Run the
Program

The steps to build and run the idn example program follow.

1 Connect an instrument to a GPIB interface that is compatible with
IEEE 488.2.

2 Start the Visual Basic 6.0 application.

3 Start a new Visual Basic Standard EXE project. VB 6.0 will open
a new Project1 project with a blank Form, Form1.

4 From the menu, select Project | Add Module, select the
Existing tab, and browse to the idn directory.

5 The idn example files are located in directory vb\samples\idn.
Select the file idn.bas and click Open. Since the Main() subroutine
is executed when the program is run without requiring user
interaction with a Form, Form1 may be deleted if desired. To do
this, right-click Form1 in the Project Explorer window and select
Remove Form1.

6 VISA applications in Visual Basic require the VISA Visual Basic
(VB) declaration file visa32.bas in your VB project. This file
contains the VISA function definitions and constant declarations
needed to make VISA calls from Visual Basic.

NOTE

This example assumes you are building a new project (no .vbp file exists
for project). If you do not want to build the project from scratch, from the
menu select File | Open Project... and select and open the
idn.vbp file and skip to Step 9.
Chapter 2 25

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)
7 To add this module to your project in VB 6.0, from the menu select
Project | Add Module, select the Existing tab, browse to
the directory containing the VB Declaration file, select visa32.bas,
and click Open.

8 The name and location of the VB declaration file depends on which
operating system is used. Assuming the 'standard' VISA directory
C:\Program Files\Visa or the 'standard' VXIpnp directory
C:\VXIpnp, the visa32.bas file can be located in one of these
directories:

\winnt\include\visa32.bas (Windows NT/2000)
\win95\include\visa32.bas (Windows 95/98/Me)

9 At this point, the Visual Basic project can be run and debugged.
You will need to change the VISA Interface Name and address in
the code to match your device�s configuration.

10 If you want to compile to an executable file, from the menu select
File | Make idn.exe... and press Open. This will create
idn.exe in the idn directory.

Example Program
Source Code

An explanation of the various function calls in the example is provided after
the program listing. If the program runs correctly, the following is an example
of the output in a Message Box if connected to a 54601A oscilloscope.

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, see the Event Viewer for a list of run-time
errors. The source file idn.bas follows.

Option Explicit
'''
' idn.bas
' This example program queries a GPIB device for an identification
' string and prints the results. Note that you may have to change the
' VISA Interface Name and address for your device from "GPIB0" and "22",
' respectively.
'''
Sub Main()

Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long 'Session to instrument
Dim strRes As String * 200 'Fixed length string to hold results
26 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)
' Open the default resource manager session
Call viOpenDefaultRM(defrm)

 ' Open the session to the resource
 ' The "GPIB0" parameter is the VISA Interface name to a GPIB

' instrument as defined in
 ' Start | Programs | Agilent IO Libraries | IO Config
 ' Change this name to what you have defined your VISA Interface.
 ' "GPIB0::22::INSTR" is the address string for the device.

' this address will be the same as seen in:
 ' Start | Programs | Agilent IO Libraries | VISA Assistant
 ' after the VISA Interface Name is defined in IO Config)

 Call viOpen(defrm, "GPIB0::22::INSTR", 0, 0, vi)

 ' Initialize device
 Call viVPrintf(vi, "*RST" + Chr$(10), 0)

 ' Ask for the device's *IDN string.
 Call viVPrintf(vi, "*IDN?" + Chr$(10), 0)

 ' Read the results as a string.
 Call viVScanf(vi, "%t", strRes)

 ' Display the results
 MsgBox "Result is: " + strRes, vbOKOnly, "*IDN? Result"

 ' Close the vi session and the resource manager session
 Call viClose(vi)
 Call viClose(defrm)
End Sub
Chapter 2 27

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)
Example Program
Contents

A summary of the VISA function calls used in the example Visual Basic
program follows. For a more detailed explanation of VISA functionality, see
Chapter 4 - Programming with VISA. See Chapter 7 - VISA Language
Reference for more detailed information on these VISA function calls.

Function(s) Description

viOpenDefaultRM You must first open a session with the default resource manager with the
viOpenDefaultRM function. This function will initialize the default
resource manager and return a pointer (defrm) to that resource manager
session.

viOpen This function establishes a communication channel with the device
specified. A session identifier (vi) that can be used with other VISA
functions is returned. This call must be made for each device you will be
using.

viVPrintf and
viVScanf

These are the VISA formatted I/O functions. The viVPrintf call sends
the IEEE 488.2 *RST command to the instrument (plus a linefeed
character) and puts it in a known state. The viVPrintf call is used again
to query for the device identification (*IDN?). The viVScanf call is then
used to read the results (strRes) that are displayed in a Message Box.

viClose This function must be used to close each session. When you close a
device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.
28 Chapter 2

Building a VISA Application in Windows
Logging Error Messages
Logging Error Messages
When developing or debugging your VISA application, you may want to view
internal VISA messages while your application is running. You can do this
by using the Message Viewer utility (for Windows 95/98/Me), the Event
Viewer utility (for Windows 2000/NT), or the Debug Window (for Windows
95/98/2000/Me/NT). There are three choices for VISA logging:

� Off (default) for best performance
� Event Viewer/Message Viewer
� Debug Window

Using the Event Viewer
For Windows 2000 or Windows NT, the Event Viewer utility provides a
way to view internal VISA error messages during application execution.
Some of these internal messages do not represent programming errors and
are actually error messages from VISA which are being handled internally
by VISA. The process to use the Event Viewer is:

� Enable VISA logging from the Agilent IO Libraries Control, click
VISA Logging | Event Viewer.

� Run your VISA program.

� View VISA error messages by running the Event Viewer.
From the Agilent IO Libraries Control, click Run Event Viewer.
VISA error messages will appear in the application log of the Event
Viewer utility.

Using the Message Viewer
For Windows 95, Windows 98, or Windows Me, the Message Viewer utility
provides a way to view internal VISA error messages during application
execution. Some of these internal messages do not represent programming
errors and are actually error messages from VISA which are being handled
internally by VISA.

The Message Viewer utility must be run BEFORE you run your VISA
application. However, the utility will receive messages while minimized.
This utility also provides menu selections for saving the logged messages to
a file and for clearing the message buffer.
Chapter 2 29

Building a VISA Application in Windows
Logging Error Messages
The process to use the Message Viewer is:

� Enable VISA logging from the Agilent IO Libraries Control, click
VISA Logging | Message Viewer.

� Start the Message Viewer. From the Agilent IO Libraries Control,
click Run Message Viewer.

� Run your VISA program.

� View error messages in the Message Viewer window.

Using the Debug Window

� When VISA logging is directed to the Debug Window, VISA writes
logging messages using the Win32 API call OutputDebugString().
The most common use for this feature is when debugging your VISA
program using an application such as Microsoft Visual Studio. In this
case, VISA messages will appear in the Visual Studio output
window. The process to use the Debug Window is:

� Enable VISA logging from the Agilent IO Libraries Control. Click
VISA Logging | Debug Window.

� Run your VISA program from Microsoft Visual Studio (or
equivalent application).

� View error messages in the Visual Studio (or equivalent) output
window.
30 Chapter 2

3

Building a VISA Application in
HP-UX
31

Building a VISA Application in HP-UX

This chapter gives guidelines to build a VISA application on HP-UX version
10.20 or later. The chapter contains the following sections:

� Building a VISA Program in HP-UX
� Using Online Help
32 Chapter 3

Building a VISA Application in HP-UX
Building a VISA Program in HP-UX
Building a VISA Program in HP-UX
This section lists and example program called idn that queries a GPIB
instrument for its identification string. The idn example program is located
in the following subdirectory:

opt/vxipnp/hpux/hpvisa/share/examples

Example Source Code
The source file idn.c follows. An explanation of the various function calls in
the example is provided directly after the program listing.

/*idn.c
This program queries a GPIB device for an ID string and prints
the results. Note that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::24::INSTR", VI_NULL,VI_NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");

/* Read results */
viScanf(vi, "%t", buf);

/* Print results */
printf ("Instrument identification string: %s\n", buf);

/* Close sessions */
viClose(vi);
viClose(defaultRM);

}

Chapter 3 33

Building a VISA Application in HP-UX
Building a VISA Program in HP-UX
Example Program Contents
A summary of the VISA function calls used in the example program follows.
For a more detailed explanation of VISA functionality, see Chapter 4 -
Programming with VISA. See Chapter 7 - VISA Language Reference for
more detailed information on these VISA calls.

visa.h. This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

ViSession. The ViSession is a VISA data type. Each object that will
establish a communication channel must be defined as ViSession.

viOpenDefaultRM. You must first open a session with the default resource
manager with the viOpenDefaultRM function. This function will initialize
the default resource manager and return a pointer to that resource manager
session.

viOpen. This function establishes a communication channel with the device
specified. A session identifier that can be used with other VISA functions is
returned. This call must be made for each device you will be using.

viPrintf and viScanf. These are the VISA formatted I/O functions that are
patterned after those used in the C programming language. The viPrintf
call sends the IEEE 488.2 *RST command to the instrument and puts it in
a known state. The viPrintf call is used again to query for the device
identification (*IDN?). The viScanf call is then used to read the results.

viClose. This function must be used to close each session. When you close
a device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.

Running the Example Program
To run the idn example program, type the program name at the command
prompt. For example:

idn

If the program run correctly, the following is an example of the output if
connected to a 54601A oscilloscope:

 Hewlett-Packard,54601A,0,1.7
34 Chapter 3

Building a VISA Application in HP-UX
Building a VISA Program in HP-UX
If you have problems running the idn example program, first check to make
sure the device address specified in your program is correct. If the program
still does not run, check the I/O configuration. See the Agilent I/O Libraries
Installation and Configuration Guide for HP-UX for information on I/O
configuration.

Compiling and Linking a VISA Program
You can create your VISA applications in ANSI C or C++. When compiling
and linking a C program that uses VISA, use the -lvisa command line
option to link in the VISA library routines. The following example creates the
idn executable file:

cc -Aa -o idn idn.c -lvisa

� The -Aa option indicates ANSI C
� The -o option creates an executable file called idn
� The -l option links in the VISA library

Logging Error Messages
To view any VISA internal errors that may occur on HP-UX, edit the
/etc/opt/vxipnp/hpux/hpvisa/hpvisa.ini file. Change the
ErrorLog= line in this file to the following:

ErrorLog=true

The error messages, if any, will be then be printed to stderr.
Chapter 3 35

Building a VISA Application in HP-UX
Using Online Help
Using Online Help
Online help for VISA on HP-UX is provided with Bristol Technology's
HyperHelp Viewer, or in the form of HP-UX manual pages (man pages), as
explained in the following subsections.

Using the HyperHelp Viewer
The Bristol Technology HyperHelp Viewer allows you to view the VISA
functions online. To start the HyperHelp Viewer with the VISA help file,
type:

hyperhelp/opt/hyperhelp/visahelp.hlp

When you start the Viewer, you can also specify any of the following options

Using HP-UX Manual Pages
To use manual pages, type the HP-UX man command followed by the VISA
function name:

man function
The following are examples of selecting online help on VISA functions:

man viPrintf
man viScanf
man viPeek

-k keyword Opens the Viewer and searches for the specified
keyword.

-p partial_keyword Opens the Viewer and searches for a specific
partial keyword.

-s viewmode Opens the Viewer in the specified viewmode.
If 1 is specified as the viewmode, the Viewer is
shared by all applications. If 0 is specified, a
separate Viewer is opened for each application
(default).

-display display Opens the Viewer on the specified display.
36 Chapter 3

4

Programming with VISA
37

Programming with VISA

This chapter describes how to program with VISA. The basics of VISA are
described, including formatted I/O, events and handlers, attributes, and
locking. Example programs are also provided and can be found in the
SAMPLES subdirectory on Windows environments or in the examples
subdirectory on HP-UX.

See Appendix A - VISA Library Information for the specific location of the
example programs on your operating system. For specific details on VISA
functions, see Chapter 7 - VISA Language Reference. This chapter contains
the following sections:

� VISA Resources and Attributes
� Using Sessions
� Sending I/O Commands
� Using Events and Handlers
� Trapping Errors
� Using Locks
38 Chapter 4

Programming with VISA
VISA Resources and Attributes
VISA Resources and Attributes
This section introduces VISA resources and attributes, including:

� VISA Resources
� VISA Attributes

VISA Resources
In VISA, a resource is defined as any device (such as a voltmeter) with
which VISA can provide communication. VISA defines six resource classes
that a complete VISA system, fully compliant with the VXIplug&play Systems
Alliance specification, can implement. Each resource class includes:

� Attributes to determine the state of a resource or session or to set
a resource or session to a specified state.

� Events for communication with applications.

� Operations (functions) that can be used for the resource class.

A summary description of each resource class supported by Agilent VISA
follows. See Appendix B - VISA Resource Classes for a description of the
attributes, events, and operations for each resource class.

NOTE

Although the Servant Device-Side (SERVANT) resource is defined by the
VISA specification, the SERVANT resource is not supported by Agilent
VISA. See Appendix B - VISA Resource Classes for a description of the
SERVANT resource.

Resource Class Interface Types Resource Class Description

Instrument Control (INSTR) Generic, GPIB, GPIB-VXI,
Serial, TCPIP, VXI

Device operations (reading, writing,
triggering, etc.).

GPIB Bus Interface (INTFC) Generic, GPIB Raw GPIB interface operations (reading,
writing, triggering, etc.).

Memory Access (MEMACC) Generic, GPIB-VXI, VXI Address space of a memory-mapped bus
such as the VXIbus.
Chapter 4 39

Programming with VISA
VISA Resources and Attributes
VISA Attributes
Attributes are associated with resources or sessions. You can use attributes
to determine the state of a resource or session or to set a resource or
session to a specified state.

For example, you can use the viGetAttribute function to read the state
of an attribute for a specified session, event context, or find list. There are
read only (RO) and read/write (RW) attributes. Use the viSetAttribute
function to modify the state of a read/write attribute for a specified session,
event context, or find list.

The pointer passed to viGetAttribute must point to the exact type
required for that attribute: ViUInt16, ViInt32, etc. For example, when
reading an attribute state that returns a ViUInt16, you must declare a
variable of that type and use it for the returned data. If ViString is
returned, you must allocate an array and pass a pointer to that array for the
returned data.

Example: Reading a
VISA Attribute

This example reads the state of the VI_ATTR_TERMCHAR_EN attribute and
changes it if it is not true.

ViBoolean state, newstate;
newstate=VI_TRUE;
viGetAttribute(vi, VI_ATTR_TERMCHAR_EN, &state);
if (state err !=VI_TRUE) viSetAttribute(vi,

VI_ATTR_TERMCHAR_EN, newstate);

VXI Mainframe Backplane
(BACKPLANE)

Generic, GPIB-VXI, VXI
(GPIB-VXI BACKPLANE
not supported)

VXI-defined operations and properties of
each backplane (or chassis) in a VXIbus
system.

Servant Device-Side Resource
(SERVANT)

GPIB, VXI, TCPIP (not
supported)

Operations and properties of the
capabilities of a device and a device's
view of the system in which it exists.

TCPIP Socket (SOCKET) Generic, TCPIP Operations and properties of a raw
network socket connection using TCPIP.

Resource Class Interface Types Resource Class Description
40 Chapter 4

Programming with VISA
Using Sessions
Using Sessions
This section shows how to use VISA sessions, including:

� Including the VISA Declarations File (C/C++)
� Adding the visa32.bas File (Visual Basic)
� Opening a Session to a Resource
� Addressing a Session
� Closing a Session
� Searching for Resources

Including the VISA Declarations File (C/C++)
For C and C++ programs, you must include the visa.h header file at the
beginning of every file that contains VISA function calls:

#include "visa.h"

This header file contains the VISA function prototypes and the definitions for
all VISA constants and error codes. The visa.h header file also includes the
visatype.h header file.

The visatype.h header file defines most of the VISA types. The VISA types
are used throughout VISA to specify data types used in the functions. For
example, the viOpenDefaultRM function requires a pointer to a parameter
of type ViSession. If you find ViSession in the visatype.h header file,
you will find that ViSession is eventually typed as an unsigned long. VISA
types are also listed in Appendix A - VISA System Information.

Adding the visa32.bas File (Visual Basic)
You must add the visa32.bas Basic Module file to your Visual Basic Project.
The visa32.bas file contains the VISA function prototypes and definitions for
all VISA constants and error codes.

Opening a Session
A session is a channel of communication. Sessions must first be opened on
the default resource manager, and then for each resource you will be using.

� A resource manager session is used to initialize the VISA system.
It is a parent session that knows about all the opened sessions. A
resource manager session must be opened before any other
session can be opened.
Chapter 4 41

Programming with VISA
Using Sessions
� A resource session is used to communicate with a resource on an
interface. A session must be opened for each resource you will be
using. When you use a session you can communicate without
worrying about the type of interface to which it is connected. This
insulation makes applications more robust and portable across
interfaces.

Resource Manager
Sessions

There are two parts to opening a communications session with a specific
resource. First, you must open a session to the default resource manager
with the viOpenDefaultRM function. The first call to this function initializes
the default resource manager and returns a session to that resource
manager session. You only need to open the default manager session once.
However, subsequent calls to viOpenDefaultRM returns a unique session
to the same default resource manager resource.

Resource Sessions Next, you open a session with a specific resource with the viOpen function.
This function uses the session returned from viOpenDefaultRM and
returns its own session to identify the resource session. The following shows
the function syntax:

viOpenDefaultRM(sesn);
viOpen(sesn, rsrcName, accessMode, timeout, vi);

The session returned from viOpenDefaultRM must be used in the sesn
parameter of the viOpen function. The viOpen function then uses that
session and the resource address specified in the rsrcName parameter to
open a resource session. The vi parameter in viOpen returns a session
identifier that can be used with other VISA functions.

Your program may have several sessions open at the same time by creating
multiple session identifiers by calling the viOpen function multiple times.
The following table summarizes the parameters in the previous function
calls.

Parameter Description

sesn A session returned from the viOpenDefaultRM function that identifies the
resource manager session.

rsrcName A unique symbolic name of the resource (resource address).
42 Chapter 4

Programming with VISA
Using Sessions
Example: Opening a
Resource Session

This example shows one way of opening resource sessions with a GPIB
multimeter and a GPIB-VXI scanner. The example first opens a session
with the default resource manager. The session returned from the resource
manager and a resource address is then used to open a session with the
GPIB device at address 22. That session will now be identified as dmm
when using other VISA functions.

The session returned from the resource manager is then used again with
another resource address to open a session with the GPIB-VXI device at
primary address 9 and VXI logical address 24. That session will now be
identified as scanner when using other VISA functions. See "Addressing
a Session" for information on addressing particular devices.

ViSession defaultRM, dmm, scanner;
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR",VI_NULL,

VI_NULL,&dmm);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,

VI_NULL,&scanner);
.
viClose(scanner);
viClose(dmm);
viClose(defaultRM);

Parameter Description

accessMode Specifies the modes by which the resource is to be accessed. The value
VI_EXCLUSIVE_LOCK is used to acquire an exclusive lock immediately upon
opening a session. If a lock cannot be acquired, the session is closed and an
error is returned. The VI_LOAD_CONFIG value is used to configure attributes
specified by some external configuration utility. If this value is not used, the
session uses the default values provided by this specification.
Multiple access modes can be used simultaneously by specifying a "bit-wise
OR" of the values. (Must use VI_NULL in VISA 1.0.).

timeout If the accessMode parameter requires a lock, this parameter specifies the
absolute time period (in milliseconds) that the resource waits to get unlocked
before this operation returns an error. Otherwise, this parameter is ignored.
(Must use VI_NULL in VISA 1.0.)

vi This is a pointer to the session identifier for this particular resource session.
This pointer will be used to identify this resource session when using other
VISA functions.
Chapter 4 43

Programming with VISA
Using Sessions
Addressing a Session
As shown in the previous section, the rsrcName parameter in the viOpen
function is used to identify a specific resource. This parameter consists of
the VISA interface name and the resource address. The interface name is
determined when you run the VISA configuration utility. This name is usually
the interface type followed by a number.

The following table illustrates the format of the rsrcName for different
interface types. INSTR is an optional parameter that indicates that you are
communicating with a resource that is of type INSTR, meaning instrument.
The keywords are:

� ASRL establishes communication with asynchronous serial devices.
� GPIB establishes communication with GPIB devices or interfaces.
� GPIB-VXI is used for GPIB-VXI controllers.
� TCPIP establishes communication with LAN instruments.
� VXI is used for VXI instruments.

Interface Typical Syntax
ASRL ASRL[board][::INSTR]

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB GPIB[board]::INTFC

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board][::VXI logical address]::BACKPLANE

TCPIP TCPIP[board]::host address[::LAN device name]::INSTR

TCPIP TCPIP[board]::host address::port::SOCKET

VXI VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board][::VXI logical address]::BACKPLANE
44 Chapter 4

Programming with VISA
Using Sessions
The following table describes the parameters used above.

Some examples of valid symbolic names follow.

Parameter Description

board This optional parameter is used if you have more
than one interface of the same type. The default
value for board is 0.

host address The IP address (in dotted decimal notation) or the
name of the host computer/gateway.

LAN device name The assigned name for a LAN device. The default is
inst().

port The port number to use for a TCP/IP Socket
connection.

primary address This is the primary address of the GPIB device.

secondary address This optional parameter is the secondary address of
the GPIB device. If no secondary address is
specified, none is assumed.

VXI logical address This is the logical address of the VXI instrument.

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface
VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI
controlled VXI system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary
address 0 in GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface
number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.
Chapter 4 45

Programming with VISA
Using Sessions
Example: Opening a
Session

This example shows one way to open a resource session with the GPIB
device at primary address 23.

ViSession defaultRM, vi;
.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::23::INSTR", VI_NULL,

VI_NULL,&vi);
.
.
viClose(vi);
viClose(defaultRM);

Closing a Session
The viClose function must be used to close each session. You can close
the specific resource session, which will free all data structures that had
been allocated for the session. If you close the default resource manager
session, all sessions opened using that resource manager session will be
closed.

Since system resources are also used when searching for resources
(viFindRsrc), the viClose function needs to be called to free up find lists.
See "Searching for Resources" for more information on closing find lists.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default VXI
system, which is interface 0.

GPIB-VXI2::
BACKPLANE

Mainframe resource for default chassis on GPIB-VXI
interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB interface 1.

VXI0::SERVANT Servant/device-side resource for VXI interface 0.

TCPIP0::1.2.3.4::999::
SOCKET

Raw TCPIP access to port 999 at the specified
address.

TCPIP::devicename@
company.com::INSTR

TCPIP device using VXI-11 located at the specified
address. This uses the default LAN Device Name of
inst0.
46 Chapter 4

Programming with VISA
Using Sessions
Searching for Resources
When you open the default resource manager, you are opening a parent
session that knows about all the other resources in the system. Since the
resource manager session knows about all resources, it has the ability to
search for specific resources and open sessions to these resources. You
can, for example, search an interface for devices and open a session with
one of the devices found.

Use the viFindRsrc function to search an interface for device resources.
This function finds matches and returns the number of matches found
and a handle to the resources found. If there are more matches, use the
viFindNext function with the handle returned from viFindRsrc to
get the next match:

viFindRsrc(sesn, expr, findList, retcnt, instrDesc);
.
.
viFindNext(findList, instrDesc);
.
.
viClose (findList);

Where the parameters are defined as follows.

The handle returned from viFindRsrc should be closed to free up all the
system resources associated with the search. To close the find object, pass
the findList to the viClose function.

Parameter Description

sesn The resource manager session.

expr The expression that identifies what to search (see table that
follows).

findList A handle that identifies this search. This handle will then be used
as an input to the viFindNext function when finding the next
match.

retcnt A pointer to the number of matches found.

instrDesc A pointer to a string identifying the location of the match. Note
that you must allocate storage for this string.
Chapter 4 47

Programming with VISA
Using Sessions
Use the expr parameter of the viFindRsrc function to specify the interface
to search. You can search for devices on the specified interface. Use the
following table to determine what to use for your expr parameter.

Example: Searching
VXI Interface for
Resources

This example searches the VXI interface for resources. The number of
matches found is returned in nmatches, and matches points to the string that
contains the matches found. The first call returns the first match found, the
second call returns the second match found, etc. VI_FIND_BUFLEN is
defined in the visa.h declarations file.

ViChar buffer [VI_FIND_BUFLEN];
ViRsrc matches=buffer;
ViUInt32 nmatches;
ViFindList list;
.
.
viFindRsrc(defaultRM, "VXI?*INSTR", &list, &nmatches,

 matches);
. .
.
viFindNext(list, matches);
.
.
viClose(list);

NOTE

Because VISA interprets strings as regular expressions, the string
GPIB?*INSTR applies to both GPIB and GPIB-VXI devices.

Interface expr Parameter

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

ASRL ASRL[0-9]*::?*INSTR

All ?*INSTR
48 Chapter 4

Programming with VISA
Sending I/O Commands
Sending I/O Commands
This section gives guidelines to send I/O commands, including:

� Types of I/O
� Using Formatted I/O
� Using Non-Formatted I/O

Types of I/O
Once you have established a communications session with a device, you
can start communicating with that device using VISA's I/O routines. VISA
provides both formatted and non-formatted I/O routines.

� Formatted I/O converts mixed types of data under the control of a
format string. The data is buffered, thus optimizing interface traffic.

� Non-formatted I/O sends or receives raw data to or from a device.
With non-formatted I/O, no format or conversion of the data is
performed. Thus, if formatted data is required, it must be done by
the user.

You can choose between VISA's formatted and non-formatted I/O routines.
However, since the non-formatted I/O performs the low-level I/O, you should
not mix formatted I/O and non-formatted I/O in the same session. See the
following sections for descriptions and examples using formatted I/O and
non-formatted I/O in VISA.

Using Formatted I/O
The VISA formatted I/O mechanism is similar to the C stdio mechanism.
The VISA formatted I/O functions are viPrintf, viQueryf, and
viScanf. There are also two non-buffered and non-formatted I/O functions
that synchronously transfer data, called viRead and viWrite and two that
asynchronously transfer data, called viReadAsync and viWriteAsync.

These are raw I/O functions and do not intermix with the formatted I/O
functions. See "Using Non-Formatted I/O" in this chapter. See Chapter 7 -
VISA Language Reference for more information on how data is converted
under the control of the format string.
Chapter 4 49

Programming with VISA
Sending I/O Commands
Formatted I/O
Functions

As noted, the VISA formatted I/O functions are viPrintf, viQueryf, and
viScanf.

� The viPrintf functions format according to the format string and
send data to a device. The viPrintf function sends separate arg
parameters, while the viVPrintf function sends a list of
parameters in params:

viPrintf(vi, writeFmt[, arg1][, arg2][, ...]);
viVPrintf(vi, writeFmt, params);

� The viScanf functions receive and convert data according to the
format string. The viScanf function receives separate arg
parameters, while the viVScanf function receives a list of
parameters in params:

viScanf(vi, readFmt[, arg1][, arg2][, ...]);
viVScanf(vi, readFmt, params);

� The viQueryf functions format and send data to a device and then
immediately receive and convert the response data. Hence, the
viQueryf function is a combination of the viPrintf and
viScanf functions. Similarly, the viVQueryf function is a
combination of the viVPrintf and viVScanf functions. The
viQueryf function sends and receives separate arg parameters,
while the viVQueryf function sends and receives a list of
parameters in params:

viQueryf(vi, writeFmt, readFmt[, arg1][, arg2][, ...]);
viVQueryf(vi, writeFmt, readFmt, params);

Formatted I/O
Conversion

The formatted I/O functions convert data under the control of the format
string. The format string specifies how the argument is converted before it is
input or output. The format specifier sequence consists of a % (percent)
followed by an optional modifier(s), followed by a format code.

%[modifiers]format code
Zero or more modifiers may be used to change the meaning of the format
code. Modifiers are only used when sending or receiving formatted I/O. To
send formatted I/O, the asterisk (*) can be used to indicate that the number
is taken from the next argument.
50 Chapter 4

Programming with VISA
Sending I/O Commands
However, when the asterisk is used when receiving formatted I/O, it
indicates that the assignment is suppressed and the parameter is discarded.
Use the pound sign (#) when receiving formatted I/O to indicate that an
extra argument is used. The following are supported modifiers. See the
viPrintf function in Chapter 7 - VISA Language Reference for additional
enhanced modifiers (@1, @2, @3, @H, @Q, or @B).

� Field Width. Field width is an optional integer that specifies how
many characters are in the field. If the viPrintf or viQueryf
(writeFmt) formatted data has fewer characters than specified in the
field width, it will be padded on the left, or on the right if the � flag is
present.

You can use an asterisk (*) in place of the integer in viPrintf or
viQueryf (writeFmt) to indicate that the integer is taken from the
next argument. For the viScanf or viQueryf (readFmt) functions,
you can use a # sign to indicate that the next argument is a
reference to the field width.

The field width modifier is only supported with viPrintf and
viQueryf (writeFmt) format codes d, f, s, and viScanf and
viQueryf (readFmt) format codes c, s, and [].

Example: Using
Field Width Modifier

The following example pads numb to six characters and sends it to
the session specified by vi:

int numb = 61;
viPrintf(vi, "%6d\n", numb);

Inserts four spaces, for a total of 6 characters: 61

� .Precision. Precision is an optional integer preceded by a period.
This modifier is only used with the viPrintf and viQueryf
(writeFmt) functions. The meaning of this argument is dependent on
the conversion character used. You can use an asterisk (*) in place
of the integer to indicate the integer is taken from the next argument.
Chapter 4 51

Programming with VISA
Sending I/O Commands
Example: Using the
Precision Modifier

This example converts numb so that there are only two digits to the
right of the decimal point and sends it to the session specified by vi:

float numb = 26.9345;
viPrintf(vi, "%.2f\n", numb);

Sends : 26.93

� Argument Length Modifier. The meaning of the optional argument
length modifier h, l, L, z'' or Z is dependent on the conversion
character, as listed in the following table. Note that z and Z are not
ANSI C standard modifiers.

Format Code Description

d Indicates the minimum number of digits to appear is
specified for the @1, @H, @Q, and @B flags, and the
i, o, u, x, and X format codes.

f Indicates the maximum number of digits after the
decimal point is specified.

s Indicates the maximum number of characters for the
string is specified.

g Indicates the maximum significant digits are specified.

Argument
Length

Modifier

Format
Codes

Description

h d, b, B Corresponding argument is a short integer or
a reference to a short integer for d. For b or
B, the argument is the location of a block of
data or a reference to a data array. (B is only
used with viPrintf or viQueryf (writeFmt).)

l d, f,
b, B

Corresponding argument is a long integer or
a reference to a long integer for d. For f, the
argument is a double float or a reference to a
double float. For b or B, the argument is the
location of a block of data or a reference to a
data array. (B is only used with viPrintf or
viQueryf (writeFmt).)
52 Chapter 4

Programming with VISA
Sending I/O Commands
� , Array Size. The comma operator is a format modifier that allows
you to read or write a comma-separated list of numbers (only valid
with %d and %f format codes). It is a comma followed by an integer.
The integer indicates the number of elements in the array. The
comma operator has the format of ,dd where dd is the number of
elements to read or write.

For viPrintf or viQueryf (writeFmt), you can use an asterisk
(*) in place of the integer to indicate that the integer is taken from
the next argument. For viScanf or viQueryf (readFmt), you can
use a # sign to indicate that the next argument is a reference to the
array size.

Example: Using
Array Size Modifier

This example specifies a comma-separated list to be sent to the
session specified by vi:
int list[5]={101,102,103,104,105};
viPrintf(vi, "%,5d\n", list);

Sends: 101,102,103,104,105

� Special Characters. Special formatting character sequences will
send special characters. The following describes the special
characters and what will be sent.

The format string for viPrintf and viQueryf (writeFmt) puts a
special meaning on the newline character (\n). The newline
character in the format string flushes the output buffer to the device.

L f Corresponding argument is a long double or
a reference to a long double.

z b, B Corresponding argument is an array of floats
or a reference to an array of floats. (B is only
used with viPrintf or viQueryf (writeFmt).)

Z b, B Corresponding argument is an array of
double floats or a reference to an array of
double floats. (B is only used with viPrintf or
viQueryf (writeFmt).)

Argument
Length

Modifier

Format
Codes

Description
Chapter 4 53

Programming with VISA
Sending I/O Commands
All characters in the output buffer will be written to the device with an
END indicator included with the last byte (the newline character).
This means you can control at what point you want the data written
to the device. If no newline character is included in the format string,
the characters converted are stored in the output buffer. It will
require another call to viPrintf, viQueryf (writeFmt), or
viFlush to have those characters written to the device.

This can be very useful in queuing up data to send to a device. It
can also raise I/O performance by doing a few large writes instead
of several smaller writes. The * while using the viScanf functions
acts as an assignment suppression character. The input is not
assigned to any parameters and is discarded.

The grouping operator () in a regular expression has the highest
precedence, the + and * operators in a regular expression have the
next highest precedence after the grouping operator, and the or
operator | in a regular expression has the lowest precedence.
Some example expressions follow the table.

Special
Characters and

Operators

Description

? Matches any one character.

\ Makes the character that follows it an ordinary character
instead of special character. For example, when a question
mark follows a backslash (e.g.,� '\?�), it matches the '?'
character instead of any one character.

[list] Matches any one character from the enclosed list. A hyphen
can be used to match a range of characters.

[^list] Matches any character not in the enclosed list. A hyphen
can be used to match a range of characters.

* Matches 0 or more occurrences of the preceding character
or expression.

+ Matches 1 or more occurrences of the preceding character or
expression.

exp|exp Matches either the preceding or following expression. The or
operator | matches the entire expression that precedes or
follows it and not just the character that precedes or follows it.
For example, VXI|GPIB means (VXI) | (GPIB), not
VXI(I|G)PIB.
54 Chapter 4

Programming with VISA
Sending I/O Commands
(exp) Grouping characters or expressions.

� � Sends a blank space.

\n Sends the ASCII line feed character. The END identifier will
also be sent.

\r Sends an ASCII carriage return character.

\t Sends an ASCII TAB character.

\### Sends ASCII character specified by octal value.

\" Sends the ASCII double quote character.

\\ Sends a backslash character.

Example Expression Sample Matches

GPIB?*INSTR Matches GPIB0::2::INSTR,
GPIB1::1::1::INSTR, and GPIB-
VXI1::8::INSTR

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB-VXI1::8::INSTR

GPIB[0-9]::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB12::8::INSTR.

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not
GPIB0::2::INSTR or GPIB12::8::INSTR

VXI?*INSTR Matches VXI0::1::INSTR but not
GPIB-VXI0::1::INSTR

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but not
VXI0::1::INSTR

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and
GPIB-VXI0::1::INSTR

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not
VXI0::5::INSTR

ASRL1+::INSTR Matches ASRL1::INSTR and ASRL11::INSTR
but not ASRL2::INSTR

Special
Characters and

Operators

Description
Chapter 4 55

Programming with VISA
Sending I/O Commands
Format Codes. This table summarizes the format codes for sending and
receiving formatted I/O.

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and
VXI0::3::INSTR but not ASRL2::INSTR

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and
VXI0::1::INSTR

?*INSTR Matches all INSTR (device) resources

?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and
GPIB-VXI1::MEMACC

VXI0::?* Matches VXI0::1::INSTR, VXI0::2::INSTR,
and VXI0::MEMACC

?* Matches all resources

Format Codes Description

viPrintf/viVPrintf and viQueryf/viVqueryf (writeFmt)

d, i Corresponding argument is an integer.

f Corresponding argument is a double.

c Corresponding argument is a character.

s Corresponding argument is a pointer to a null terminated string.

% Sends an ASCII percent (%) character.

o, u, x, X Corresponding argument is an unsigned integer.

e, E, g, G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

b, B Corresponding argument is the location of a block of data.

viPrintf/viVPrintf and viQueryf/viVqueryf (readFmt)

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character sequence.

s,t,T Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

Example Expression Sample Matches
56 Chapter 4

Programming with VISA
Sending I/O Commands
Example: Receiving
Data From a
Session

This example receives data from the session specified by the vi parameter
and converts the data to a string.

char data[180];
viScanf(vi, "%t", data);

Formatted I/O
Buffers

The VISA software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers. You can modify the size of the buffer using the viSetBuf function.
See Chapter 7 - VISA Language Reference for more information on this
function.

The write buffer is maintained by the viPrintf or viQueryf (writeFmt)
functions. The buffer queues characters to send to the device so that they
are sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string. It may occasionally be flushed at other non-deterministic times, such
as when the buffer fills.

When the write buffer flushes, it sends its contents to the device. If you set
the VI_ATTR_WR_BUF_OPER_MODE attribute to VI_FLUSH_ON_ACCESS,
the write buffer will also be flushed every time a viPrintf or viQueryf
operation completes. See "VISA Attributes" in this chapter for information
on setting VISA attributes.

The read buffer is maintained by the viScanf and viQueryf (readFmt)
functions. It queues the data received from a device until it is needed by the
format string. Flushing the read buffer destroys the data in the buffer and
guarantees that the next call to viScanf or viQueryf reads data directly
from the device rather than data that was previously queued.

If you set the VI_ATTR_RD_BUF_OPER_MODE attribute to
VI_FLUSH_ON_ACCESS, the read buffer will be flushed every time a
viScanf or viQueryf operation completes. See "VISA Attributes" in this
chapter for information on setting VISA attributes.

[Corresponding argument must be a character pointer.

b Corresponding argument is a pointer to a data array.

Format Codes Description
Chapter 4 57

Programming with VISA
Sending I/O Commands
You can manually flush the read and write buffers using the viFlush
function. Flushing the read buffer also includes reading all pending response
data from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator from
the device.

Example: Sending
and Receiving
Formatted I/O

This C program example shows sending and receiving formatted I/O. The
example opens a session with a GPIB device and sends a comma operator
to send a comma-separated list. This example program is intended to show
specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments or in the examples subdirectory
on HP-UX. See Appendix A - VISA Library Information for locations of
example programs on your operating system.

/*formatio.c
This example program makes a multimeter measurement
with a comma-separated list passed with formatted
I/O and prints the results. You may need to change
the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
double res;
double list [2] = {1,0.001};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&efaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Set up device and send comma separated list */
viPrintf(vi, "CALC:DBM:REF 50\n");
viPrintf(vi, "MEAS:VOLT:AC? %,2f\n", list);
58 Chapter 4

Programming with VISA
Sending I/O Commands
/* Read results */
viScanf(vi, "%lf", &res);

/* Print results */
printf("Measurement Results: %lf\n", res);
/* Close session */
viClose(vi);
viClose(defaultRM);}

Using Non-Formatted I/O
There are two non-buffered, non-formatted I/O functions that synchronously
transfer data called viRead and viWrite. Also, there are two non-
formatted I/O functions that asynchronously transfer data called
viReadAsync and viWriteAsync. These are raw I/O functions and
do not intermix with the formatted I/O functions.

Non-Formatted I/O
Functions

The non-formatted I/O functions follow. For more information, see the
viRead, viWrite, viReadAsync, viWriteAsync, and viTerminate
functions in Chapter 7 - VISA Language Reference.

� viRead. The viRead function synchronously reads raw data from
the session specified by the vi parameter and stores the results in
the location where buf is pointing. Only one synchronous read
operation can occur at any one time.

viRead(vi, buf, count, retCount);

� viWrite. The viWrite function synchronously sends the data
pointed to by buf to the device specified by vi. Only one
synchronous write operation can occur at any one time.

viWrite(vi, buf, count, retCount);

� viReadAsync. The viReadAsync function asynchronously reads
raw data from the session specified by the vi parameter and stores
the results in the location where buf is pointing. This operation
normally returns before the transfer terminates. Thus, the operation
returns jobId, which you can use with either viTerminate to abort
the operation or with an I/O completion event to identify which
asynchronous read operation completed.

viReadAsync(vi, buf, count, jobId);
Chapter 4 59

Programming with VISA
Sending I/O Commands
� viWriteAsync. The viWriteAsync function asynchronously
sends the data pointed to by buf to the device specified by vi.
This operation normally returns before the transfer terminates.
Thus, the operation returns jobId, which you can use with either
viTerminate to abort the operation or with anI/O completion event
to identify which asynchronous write operation completed.

viWriteAsync(vi, buf, count, jobId);

Example: Using
Non-Formatted
I/O Functions

This example program illustrates using non-formatted I/O functions to
communicate with a GPIB device. This example program is intended to
show specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" in this chapter.

/*nonfmtio.c
This example program measures the AC voltage on a
multimeter and prints the results. You may need to
change the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char strres [20];
unsigned long actual;

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viWrite(vi, (ViBuf)"*RST\n", 5, &actual);

/* Set up device and take measurement */
viWrite(vi, (ViBuf)"CALC:DBM:REF 50\n", 16, &actual);
viWrite(vi, (ViBuf)"MEAS:VOLT:AC? 1, 0.001\n", 23,

&actual);

/* Read results */
viRead(vi, (ViBuf)strres, 20, &actual);
60 Chapter 4

Programming with VISA
Sending I/O Commands
/* NULL terminate the string */
strres[actual]=0;

/* Print results */
printf("Measurement Results: %s\n", strres);

/* Close session */
viClose(vi);
viClose(defaultRM);

}

Chapter 4 61

Programming with VISA
Using Events and Handlers
Using Events and Handlers
This section gives guidelines to use events and handlers, including:

� Events and Attributes
� Using the Callback Method
� Using the Queuing Method

Events and Attributes
Events are special occurrences that require attention from your application.
Event types include Service Requests (SRQs), interrupts, and hardware
triggers. Events will not be delivered unless the appropriate events are
enabled.

Event Notification There are two ways you can receive notification that an event has occurred:

� Install an event handler with viInstallhandler, and enable one
or several events with viEnableEvent. If the event was enabled
with a handler, the specified event handler will be called when the
specified event occurs. This is called a callback.

� Enable one or several events with viEnableEvent and call the
viWaitOnEvent function. The viWaitOnEvent function will
suspend the program execution until the specified event occurs or
the specified timeout period is reached. This is called queuing.

NOTE

VISA cannot callback to a Visual Basic function. Thus, you can only use
the queuing mechanism in viEnableEvent. There is no way to install a
VISA event handler in Visual Basic.

NOTE

VISA cannot callback to a Visual Basic function. This means that you can
only use the VI_QUEUE mechanism in viEnableEvent. There is no way
to install a VISA event handler in Visual Basic.
62 Chapter 4

Programming with VISA
Using Events and Handlers
The queuing and callback mechanisms are suitable for different
programming styles. The queuing mechanism is generally useful for non-
critical events that do not need immediate servicing. The callback
mechanism is useful when immediate responses are needed. These
mechanisms work independently of each other, so both can be enabled at
the same time. By default, a session is not enabled to receive any events by
either mechanism.

The viEnableEvent operation can be used to enable a session to respond
to a specified event type using either the queuing mechanism, the callback
mechanism, or both. Similarly, the viDisableEvent operation can be
used to disable one or both mechanisms. Because the two methods work
independently of each other, one can be enabled or disabled regardless of
the current state of the other.

Events That can be
Enabled

The following table shows the events that are implemented for Agilent VISA
for each resource class, where AP = Access Privilege, RO - Read Only, and
RW = Read/Write. Note that some resource classes/events, such as the
SERVANT class are not implemented by Agilent VISA and are not listed in
the following tables.

Once the application has received an event, information about that event
can be obtained by using the viGetAttribute function on that particular
event context. Use the VISA viReadSTB function to read the status byte of
the service request..

Instrument Control (INSTR) Resource Events

VI_EVENT_SERVICE_REQUEST
Notification that a service request was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
SERVICE_REQ
Chapter 4 63

Programming with VISA
Using Events and Handlers
VI_EVENT_VXI_SIGP
Notification that a VXIbus signal or VXIbus interrupt was received from the device.

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
VXI_STOP

VI_ATTR_SIGP_
STATUS_ID

The 16-bit Status/ID value
retrieved during the IACK
cycle or from the Signal
register.

RO ViUInt16 0 to FFFFh

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the device. For VISA, the only triggers that can be
sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1*

* Agilent VISA can also return VI_TRIG_PANEL_IN (exception to the VISA Specification)

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A
64 Chapter 4

Programming with VISA
Using Events and Handlers
VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

ViString N/A

Memory Access (MEMACC) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
IO_COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

RO ViString N/A

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range
Chapter 4 65

Programming with VISA
Using Events and Handlers
.

GPIB Bus Interface (INTFC) Resource Events

VI_EVENT_GPIB_CIC
Notification that the GPIB controller has gained or lost CIC (controller in charge) status

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
CIC

VI_ATTR_GPIB_RECV_
CIC_STATE

Controller has become
controller-in-charge.

RO ViBoolean VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK
Notification that the GPIB controller has been addressed to talk

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
TALK

VI_EVENT_GPIB_LISTEN
Notification that the GPIB controller has been addressed to listen.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
LISTEN

VI_EVENT_CLEAR
Notification that the GPIB controller has been sent a device clear message.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_CLEAR
66 Chapter 4

Programming with VISA
Using Events and Handlers
VI_EVENT_TRIGGER
Notification that a trigger interrupt was received from the interface.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_SW

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of buffer used in an
asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME The name of the operation
generating the event.

RO ViString N/A
Chapter 4 67

Programming with VISA
Using Events and Handlers

VXI Mainframe Backplane (BACKPLANE) Resource Events

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the backplane. For VISA, the only triggers that can
be sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_VXI_VME_SYSFAIL
Notification that the VXI/VME SYSFAIL* line has been asserted.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_
VME_SYSFAIL

VI_EVENT_VXI_VME_SYSRESET
Notification that the VXI/VME SYSRESET* line has been reset

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_
VME_SYSRESET

TCPIP Socket (SOCKET) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed

RO ViStatus N/A
68 Chapter 4

Programming with VISA
Using Events and Handlers
Example: Reading
Event Attributes

Once you have decided which attribute to check, you can read the attribute
using the viGetAttribute function. The following example shows one
way you could check which trigger line fired when the VI_EVENT_TRIG
event was delivered.

Note that the context parameter is either the event context passed to your
event handler, or the outcontext specified when doing a wait on event. See
"VISA Attributes" in this chapter for more information on reading attribute
states.

ViInt16 state;
.
.
viGetAttribute(context, VI_ATTR_RECV_TRIG_ID, &state);

Using the Callback Method
The callback method of event notification is used when an immediate
response to an event is required. To use the callback method for receiving
notification that an event has occurred, you must do the following. Then,
when the enabled event occurs, the installed event handler is called.

� Install an event handler with the viInstallHandler function
� Enable one or several events with the viEnableEvent function

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

RO ViString N/A

TCPIP Socket (SOCKET) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range
Chapter 4 69

Programming with VISA
Using Events and Handlers
Example: Using the
Callback Method

This example shows one way you can use the callback method.

ViStatus _VI_FUNCH my_handler (ViSession vi,
ViEventType

eventType, ViEvent context, ViAddr usrHandle) {

/* your event handling code here */

return VI_SUCCESS;
}
main(){
ViSession vi;
ViAddr addr=0;
.
.
viInstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,

addr);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,

VI_NULL);
.

/* your code here */
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,

addr);
.
}

Installing Handlers VISA allows applications to install multiple handlers for for an event type on
the same session. Multiple handlers can be installed through multiple
invocations of the viInstallHandler operation, where each invocation
adds to the previous list of handlers.

If more than one handler is installed for an event type, each of the handlers
is invoked on every occurrence of the specified event(s). VISA specifies that
the handlers are invoked in Last In First Out (LIFO) order. Use the following
function when installing an event handler:

viInstallHandler(vi, eventType, handler, userHandle);

Where the parameters are defined as follows:
70 Chapter 4

Programming with VISA
Using Events and Handlers
The userHandle parameter allows you to assign a value to be used with the
handler on the specified session. Thus, you can install the same handler for
the same event type on several sessions with different userHandle values.
The same handler is called for the specified event type.

However, the value passed to userHandle is different. Therefore the
handlers are uniquely identified by the combination of the handler and the
userHandle. This may be useful when you need a different handling method
depending on the userHandle.

Example: Installing
an Event Handler

This example shows how to install an event handler to call my_handler when
a Service Request occurs. Note that VI_EVENT_SERVICE_REQ must also
be an enabled event with the viEnableEvent function for the service
request event to be delivered.

viInstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,
addr);

Use the viUninstallHandler function to uninstall a specific handler.
Or you can use wildcards (VI_ANY_HNDLR in the handler parameter) to
uninstall groups of handlers. See viUninstallHandler in Chapter 7 -
VISA Language Reference for more details on this function.

Writing the Handler The handler installed needs to be written by the programmer. The event
handler typically reads an associated attribute and performs some sort of
action. See the event handler in the example program later in this section.

Parameter Description

vi The session on which the handler will be installed.

eventType The event type that will activate the handler.

handler The name of the handler to be called.

userHandle A user value that uniquely identifies the handler for the
specified event type.
Chapter 4 71

Programming with VISA
Using Events and Handlers
Enabling Events Before an event can be delivered, it must be enabled using the
viEnableEvent function. This function causes the application to be
notified when the enabled event has occurred, Where the parameters are:

viEnableEvent(vi, eventType, mechanism, context);

Using VI_QUEUE in the mechanism parameter specifies a queuing method
for the events to be handled. If you use both VI_QUEUE and one of the
mechanisms listed above, notification of events will be sent to both
locations. See the next subsection for information on the queuing method.

Example: Enabling a
Hardware Trigger
Event

This example illustrates enabling a hardware trigger event.

viInstallHandler(vi, VI_EVENT_TRIG, my_handler,&addr);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);

The VI_HNDLR mechanism specifies that the handler installed for
VI_EVENT_TRIG will be called when a hardware trigger occurs.

If you specify VI_ALL_ENABLE_EVENTS in the eventType parameter, all
events that have previously been enabled on the specified session will be
enabled for the mechanism specified in this function call.

Use the viDisableEvent function to stop servicing the event specified.

Parameter Description

vi The session on which the handler will be installed.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled. It can be
enabled in several different ways. You can use VI_HNDLR in
this parameter to specify that the installed handler will be called
when the event occurs. Use VI_SUSPEND_HNDLR in this
parameter which puts the events in a queue and waits to call
the installed handlers until viEnableEvent is called with
VI_HNDLR specified in the mechanism parameter. When
viEnableEvent is called with VI_HNDLR specified, the
handler for each queued event will be called.

context Not used in VISA 1.0. Use VI_NULL.
72 Chapter 4

Programming with VISA
Using Events and Handlers
Example: Trigger
Callback

This example program installs an event handler and enables the trigger
event. When the event occurs, the installed event handler is called. This
program is intended to show specific VISA functionality and does not include
error trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors" in this
chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments or in the examples subdirectory
on HP-UX. See Appendix A - VISA Library Information for locations of
example programs on your operating system.

/* evnthdlr.c
This example program illustrates installing an event
handler to be called when a trigger interrupt occurs.
Note that you may need to change the address. */

#include <visa.h>
#include <stdio.h>

/* trigger event handler */
ViStatus _VI_FUNCH myHdlr(ViSession vi, ViEventType

eventType, ViEvent ctx, ViAddr userHdlr){
ViInt16 trigId;

/* make sure it is a trigger event */
if(eventType!=VI_EVENT_TRIG){

/* Stray event, so ignore */
return VI_SUCCESS;

}
/* print the event information */
printf("Trigger Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get the trigger that fired */
viGetAttribute(ctx, VI_ATTR_RECV_TRIG_ID, &trigId);
printf("Trigger that fired: ");
switch(trigId){

case VI_TRIG_TTL0:
printf("TTL0");
break;

default:
printf("<other 0x%x>", trigId);
break;

}

Chapter 4 73

Programming with VISA
Using Events and Handlers
printf("\n");

return VI_SUCCESS;
}

void main(){
ViSession defaultRM,vi;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL,

&vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);
/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_TRIG, myHdlr,
(ViAddr)10);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);
/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* unenable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_TRIG, VI_HNDLR);

viUninstallHandler(vi, VI_EVENT_TRIG, myHdlr,
(ViAddr)10);

/* close the sessions */
viClose(vi);
viClose(defaultRM);

}

Example: SRQ
Callback

This program installs an event handler and enables an SRQ event. When
the event occurs, the installed event handler is called. This example
program is intended to show specific VISA functionality and does not include
error trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors" in this
chapter.

This program is installed on your system in the SAMPLES subdirectory on
Windows environments or in the examples subdirectory on HP-UX. See
Appendix A - VISA Library Information for locations of example programs on
your operating system.
74 Chapter 4

Programming with VISA
Using Events and Handlers
/* srqhdlr.c
This example program illustrates installing an event
handler to be called when an SRQ interrupt occurs.
Note that you may need to change the address. */

#include <visa.h>
#include <stdio.h>
#if defined (_WIN32)

#include <windows.h> /* for Sleep() */
#define YIELD Sleep(10)

#elif defined (_BORLANDC_)
#include <windows.h> /* for Yield() */
#define YIELD Yield()

#elif defined (_WINDOWS)
#include <io.h> /* for _wyield */
#define YIELD _wyield()

#else
#include <unistd.h>
#define YIELD sleep (1)

#endif

int srqOccurred;

/* trigger event handler */
ViStatus _VI_FUNCH mySrqHdlr(ViSession vi, ViEventType

eventType, ViEvent ctx, ViAddr userHdlr){

ViUInt16 statusByte;

/* make sure it is an SRQ event */
if(eventType!=VI_EVENT_SERVICE_REQ){

/* Stray event, so ignore */
printf("\nStray event of type 0x%lx\n", eventType

);
return VI_SUCCESS;

}
/* print the event information */
printf("\nSRQ Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get the status byte */
viReadSTB(vi, &statusByte);
printf("...Status byte is 0x%x\n", statusByte);

srqOccurred = 1;
return VI_SUCCESS;
Chapter 4 75

Programming with VISA
Using Events and Handlers
}
void main(){

ViSession defaultRM,vi;
long count;

/* open session to message based VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL, VI_NULL,
&vi);

/* Enable command error events */
viPrintf(vi, "*ESE 32\n");

/* Enable event register interrupts */
viPrintf(vi, "*SRE 32\n");

/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr,
(ViAddr)10);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,
VI_NULL);

srqOccurred = 0;

/* Send a bogus command to the message based device to
cause an SRQ. Note: 'IDN' causes the error -- 'IDN?'
is the correct syntax */
viPrintf(vi, "IDN\n");

/* Wait a while for the SRQ to be generated and for the
handler to be called. Print something while we wait */

printf("Waiting for an SRQ to be generated .");
for (count = 0 ; (count < 10) && (srqOccurred ==
0);count++) {

long count2 = 0;
printf(".");
while ((count2++ < 100) && (srqOccurred ==0)){

YIELD;
}

}
printf("\n");

/* disable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr,
76 Chapter 4

Programming with VISA
Using Events and Handlers
(ViAddr)10);
/* Clean up - do not leave device in error state */
viPrintf(vi, "*CLS\n");

/* close the sessions */
viClose(vi);
viClose(defaultRM);
printf("End of program\n");}

Using the Queuing Method
The queuing method is generally used when an immediate response from
your application is not needed. To use the queuing method for receiving
notification that an event has occurred, you must do the following:

� Enable one or several events with the viEnableEvent function.
� When ready to query, use the viWaitOnEvent function to check

for queued events.

If the specified event has occurred, the event information is retrieved and the
program returns immediately. If the specified event has not occurred, the
program suspends execution until a specified event occurs or until the
specified timeout period is reached.

Example: Using the
Queuing Method

This example program shows one way you can use the queuing method.

main();
ViSession vi;
ViEventType eventType;
ViEvent event;
.
.
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE,
VI_NULL);
.
.
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,

VI_TMO_INFINITE,
&eventType, &event);

.

.
viClose(event);
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
}

Chapter 4 77

Programming with VISA
Using Events and Handlers
Enabling Events Before an event can be delivered, it must be enabled using the
viEnableEvent function:

viEnableEvent(vi, eventType, mechanism, context);

where the parameters are defined as follows:

When you use VI_QUEUE in the mechanism parameter, you are specifying
that the events will be put into a queue. Then, when a viWaitOnEvent
function is invoked, the program execution will suspend until the enabled
event occurs or the timeout period specified is reached. If the event has
already occurred, the viWaitOnEvent function will return immediately.

Example: Enabling a
Hardware Trigger
Event

This example illustrates enabling a hardware trigger event.

viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

The VI_QUEUE mechanism specifies that when an event occurs, it will go
into a queue. If you specify VI_ALL_ENABLE_EVENTS in the eventType
parameter, all events that have previously been enabled on the specified
session will be enabled for the mechanism specified in this function call.
Use the viDisableEvent function to stop servicing the event specified.

Wait on the Event When using the viWaitOnEvent function, specify the session, the event
type to wait for, and the timeout period to wait:

viWaitOnEvent(vi, inEventType, timeout, outEventType, outContext);

The event must have previously been enabled with VI_QUEUE specified as
the mechanism parameter.

Parameter Description

vi The session the handler will be installed on.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled.
Specify VI_QUEUE to use the queuing method.

context Not used in VISA 1.0. Use VI_NULL.
78 Chapter 4

Programming with VISA
Using Events and Handlers
Example: Wait on
Event for SRQ

This example shows how to install a wait on event for service requests.

viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE,
VI_NULL);

viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
VI_TMO_INFINITE,

&eventType, &event);
.
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);

Every time a wait on event is invoked, an event context object is created.
Specifying VI_TMO_INFINITE in the timeout parameter indicates that the
program execution will suspend indefinitely until the event occurs. To clear
the event queue for a specified event type, use the viDiscardEvents
function.

Example: Trigger
Event Queuing

This program enables the trigger event in a queuing mode. When the
viWaitOnEvent function is called, the program will suspend operation until
the trigger line is fired or the timeout period is reached. Since the trigger
lines were already fired and the events were put into a queue, the function
will return and print the trigger line that fired.

This program is intended to show specific VISA functionality and does not
include error trapping. Error trapping, however, is good programming
practice and is recommended in your VISA applications. See "Trapping
Errors" in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments or in the examples subdirectory
on HP-UX. See Appendix A - VISA Library Information for locations of
example programs on your operating system.

/* evntqueu.c
This example program illustrates enabling an event
queue using viWaitOnEvent. Note that you must change
the device address. */

#include <visa.h>
#include <stdio.h>

void main(){
ViSession defaultRM,vi;
ViEventType eventType;
ViEvent eventVi;
ViStatus err;
Chapter 4 79

Programming with VISA
Using Events and Handlers
ViInt16 trigId;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL,
&vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);

/* enable the event */
viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* Wait for the event to occur */
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, &eventType,

&eventVi);
if(err==VI_ERROR_TMO){

printf("Timeout Occurred! Event not received.\n");
return;

}

/* print the event information */
printf("Trigger Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get trigger that fired */
viGetAttribute(eventVi, VI_ATTR_RECV_TRIG_ID,

&trigId);
printf("Trigger that fired: ");
switch(trigId){

case VI_TRIG_TTL0:
printf("TTL0");
break;

default:
printf("<other 0x%x>",trigId);
break;

}
printf("\n");

/* close the context before continuing */
viClose(eventVi);
80 Chapter 4

Programming with VISA
Using Events and Handlers
/* get second event */
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, &eventType,
&eventVi);
if(err==VI_ERROR_TMO){

printf("Timeout Occurred! Event not received.\n");
return;

}
printf("Got second event\n");

/* close the context before continuing */
viClose(eventVi);

/* disable event */
viDisableEvent(vi, VI_EVENT_TRIG, VI_QUEUE);

/* close the sessions */
viClose(vi);
viClose(defaultRM);

}

Chapter 4 81

Programming with VISA
Trapping Errors
Trapping Errors
This section gives guidelines to trap errors, including:

� Trapping Errors
� Exception Events

Trapping Errors
The example programs in this guide show specific VISA functionality and
do not include error trapping. Error trapping, however, is good programming
practice and is recommended in all your VISA application programs. To trap
VISA errors you must check for VI_SUCCESS after each VISA function call.

If you want to ignore WARNINGS, you can test to see if err is less than (<)
VI_SUCCESS. Since WARNINGS are greater than VI_SUCCESS and
ERRORS are less than VI_SUCCESS, err_handler would only be called
when the function returns an ERROR. For example:

if(err < VI_SUCCESS) err_handler (vi, err);

Example: Check for
VI_SUCCESS

This example illustrates checking for VI_SUCCESS. If VI_SUCCESS is not
returned, an error handler (written by the programmer) is called. This must
be done with each VISA function call.

ViStatus err;
.
.
err=viPrintf(vi, "*RST\n");
if (err < VI_SUCCESS) err_handler(vi, err);
.
.

Example: Printing
Error Code

The following error handler prints a user-readable string describing the error
code passed to the function:

void err_handler(ViSession vi, ViStatus err){

char err_msg[1024]={0};
viStatusDesc (vi, err, err_msg);
printf ("ERROR = %s\n", err_msg);
return;

}

82 Chapter 4

Programming with VISA
Trapping Errors
Example: Checking
Instrument Errors

When programming instruments, it is good practice to check the instrument
to ensure there are no instrument errors after each instrument function. This
example uses a SCPI command to check a specific instrument for errors.

void system_err(){

ViStatus err;
char buf[1024]={0};
int err_no;

err=viPrintf(vi, "SYSTEM:ERR?\n");
if (err < VI_SUCCESS) err_handler (vi, err);

err=viScanf (vi, "%d%t", &err_no, &buf);
if (err < VI_SUCCESS) err_handler (vi, err);

while (err_no >0){
printf ("Error Found: %d,%s\n", err_no, buf);
err=viScanf (vi, "%d%t", &err_no, &buf);

}
err=viFlush(vi, VI_READ_BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

err=viFlush(vi, VI_WRITE_BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

}

Exception Events
An alternative to trapping VISA errors by checking the return status after
each VISA call is to use the VISA exception event. On sessions where an
exception event handler is installed and VI_EVENT_EXCEPTION is enabled,
the exception event handler is called whenever an error occurs while
executing an operation.

Exception Handling
Model

The exception-handling model follows the event-handling model for
callbacks and it uses the same operations as those used for general event
handling. For example, an application calls viInstallHandler and
viEnableEvent to enable exception events. The exception event is like
any other event in VISA, except that the queueing and suspended handler
mechanisms are not allowed.
Chapter 4 83

Programming with VISA
Trapping Errors
When an error occurs for a session operation, the exception handler is
executed synchronously. That is, the operation that caused the exception
blocks until the exception handler completes its execution. The exception
handler is executed in the context of the same thread that caused the
exception event.

When invoked, the exception handler can check the error condition and
instruct the exception operation to take a specific action. It can instruct the
exception operation to continue normally (by returning VI_SUCCESS) or to
not invoke any additional handlers in the case of handler nesting (by
returning VI_SUCCESS_NCHAIN).

As noted, an exception operation blocks until the exception handler
execution is completed. However, an exception handler sometimes may
prefer to terminate the program prematurely without returning the control to
the operation generating the exception. VISA does not preclude an
applicationfrom using a platform-specific or language-specific exception
handling mechanism from within the VISA exception handler.

For example, the C++ try/catch block can be used in an application in
conjunction with the C++ throw mechanism from within the VISA exception
handler. When using the C++ try/catch/throw or other exception-handling
mechanisms, the control will not return to the VISA system. This has several
important repercussions:

1 If multiple handlers were installed on the exception event, the
handlers that were not invoked prior to the current handler will
not be invoked for the current exception.

2 The exception context will not be deleted by the VISA system when
a C++ exception is used. In this case, the application should delete
the exception context as soon as the application has no more use
for the context, before terminating the session. An application
should use the viClose operation to delete the exception context.

3 Code in any operation (after calling an exception handler) may not
be called if the handler does not return. For example, local
allocations must be freed before invoking the exception handler,
rather than after it.

One situation in which an exception event will not be generated is in the
case of asynchronous operations. If the error is detected after the operation
is posted (i.e., once the asynchronous portion has begun), the status is
returned normally via the I/O completion event.
84 Chapter 4

Programming with VISA
Trapping Errors
However, if an error occurs before the asynchronous portion begins (i.e., the
error is returned from the asynchronous operation itself), then the exception
event will still be raised. This deviation is due to the fact that asynchronous
operations already raise an event when they complete, and this I/O
completion event may occur in the context of a separate thread previously
unknown to the application. In summary, a single application event handler
can easily handle error conditions arising from both exception events and
failed asynchronous operations.

Using the
VI_EVENT_
EXCEPTION Event

You can use the VI_EVENT_EXCEPTION event as notification that an error
condition has occurred during an operation invocation. The following table
describes the VI_EVENT_EXCEPTION event attributes.

Example:Exception
Events

/* This is an example of how to use exception events
 to trap VISA errors. An exception event handler must
 be installed and exception events enabled on all
 sessions where the exception handler is used.*/

#include <stdio.h>
#include <visa.h>
 ViStatus __stdcall myExceptionHandler (
 ViSession vi,
 ViEventType eventType,
 ViEvent context,
 ViAddr usrHandle
) {
 ViStatus exceptionErrNbr;
 char nameBuffer[256];
 ViString functionName = nameBuffer;
 char errStrBuffer[256];
 /* Get the error value from the exception context */
 viGetAttribute(context, VI_ATTR_STATUS,

&exceptionErrNbr);
/* Get the function name from the exception context */
 viGetAttribute(context, VI_ATTR_OPER_NAME,

functionName);

Attribute Name Access
Privilege

Data Type Range Default

VI_ATTR_EVENT_TYPE RO Global ViEventType VI_EVENT_EXCEPTION N/A

VI_ATTR_STATUS RO Global ViStatus N/A N/A

VI_ATTR_OPER_NAME RO Global ViString N/A N/A
Chapter 4 85

Programming with VISA
Trapping Errors
errStrBuffer[0] = 0;
 viStatusDesc(vi, exceptionErrNbr, errStrBuffer);
 printf("ERROR: Exception Handler reports\n" "(%s)\n",
 "VISA function '%s' failed with error 0x%lx\n",

"functionName, exceptionErrNbr, errStrBuffer);
 return VI_SUCCESS;
}
void main(){
 ViStatus status;
 ViSession drm;
 ViSession vi;
 ViAddr myUserHandle = 0;

 status = viOpenDefaultRM(&drm);
 if (status < VI_SUCCESS) {
 printf("ERROR: viOpenDefaultRM failed with error =

0x%lx\n", status);
 return;
 }
/* Install the exception handler and enable events for it
*/
 status = viInstallHandler(drm, VI_EVENT_EXCEPTION,

myExceptionHandler, myUserHandle);
 if (status < VI_SUCCESS)
{
 printf("ERROR: viInstallHandler failed with error

0x%lx\n", status);
 }

status = viEnableEvent(drm, VI_EVENT_EXCEPTION, VI_HNDLR,
VI_NULL);

 if (status < VI_SUCCESS) {
 printf("ERROR: viEnableEvent failed with error

0x%lx\n", status);
 }

/* Generate an error to demonstrate that the handler
 will be called */

 status = viOpen(drm, "badVisaName", NULL, NULL, &vi);
 if (status < VI_SUCCESS) {

printf("ERROR: viOpen failed with error 0x%lx\n"
"Exception Handler should have been called\n"
"before this message was printed.\n",status);

 }
}

86 Chapter 4

Programming with VISA
Using Locks
Using Locks
In VISA, applications can open multiple sessions to a VISA resource
simultaneously. Applications can, therefore, access a VISA resource
concurrently through different sessions. However, in certain cases,
applications accessing a VISA resource may want to restrict other
applications from accessing that resource.

Lock Functions For example, when an application needs to perform successive write
operations on a resource, the application may require that, during the
sequence of writes, no other operation can be invoked through any other
session to that resource. For such circumstances, VISA defines a locking
mechanism that restricts access to resources.

The VISA locking mechanism enforces arbitration of accesses to VISA
resources on a per-session basis. If a session locks a resource, operations
invoked on the resource through other sessions either are serviced or are
returned with an error, depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all sessions have full
privilege to invoke any operation and update any global attributes. Sessions
are not required to have locks to invoke operations or update global
attributes. However, if some other session has already locked the resource,
attempts to update global attributes or invoke certain operations will fail.

See descriptions of the individual VISA functions in Chapter 7 - VISA
Language Reference to determine which would fail when a resource is
locked.

viLock/viUnlock
Functions

The VISA viLock function is used to acquire a lock on a resource.

viLock(vi, lockType, timeout, requestedKey, accessKey);

The VI_ATTR_RSRC_LOCK_STATE attribute specifies the current locking
state of the resource on the given session, which can be either
VI_NO_LOCK, VI_EXCLUSIVE_LOCK, or VI_SHARED_LOCK.

The VISA viUnlock function is then used to release the lock on a resource.
If a resource is locked and the current session does not have the lock, the
error VI_ERROR_RSRC_LOCKED is returned.
Chapter 4 87

Programming with VISA
Using Locks
VISA Lock Types VISA defines two different types of locks: Exclusive Lock and Shared Lock.

� Exclusive Lock - A session can lock a VISA resource using the lock
type VI_EXCLUSIVE_LOCK to get exclusive access privileges to the
resource. This exclusive lock type excludes access to the resource
from all other sessions.

If a session has an exclusive lock, other sessions cannot modify
global attributes or invoke operations on the resource. However, the
other sessions can still get atttributes.

� Shared Lock - A session can share a lock on a VISA resource with
other sessions by using the lock type VI_SHARED_LOCK. Shared
locks in VISA are similar to exclusive locks in terms of access
privileges, but can still be shared between multiple sessions.

If a session has a shared lock, other sessions that share the lock
can also modify global attributes and invoke operations on the
resource (of course, unless some other session has a previous
exclusive lock on that resource). A session that does not share the
lock will lack these capabilities.

Locking a resource restricts access from other sessions and, in the case
where an exclusive lock is acquired, ensures that operations do not fail
because other sessions have acquired a lock on that resource. Thus, locking
a resource prevents other, subsequent sessions from acquiring an exclusive
lock on that resource. Yet, when multiple sessions have acquired a shared
lock, VISA allows one of the sessions to acquire an exclusive lock along with
the shared lock it is holding.

Also, VISA supports nested locking. That is, a session can lock the
same VISA resource multiple times (for the same lock type) via multiple
invocations of the viLock function. In such a case, unlocking the resource
requires an equal number of invocations of the viUnlock function. Nested
locking is also explained in detail later in this section.

Some VISA operations may be permitted even when there is an exclusive
lock on a resource, or some global attributes may not be read when there is
any kind of lock on the resource. These exceptions, when applicable, are
mentioned in the descriptions of the individual VISA functions and attributes.

See Chapter 7 - VISA Language Reference for descriptions of individual
functions to determine which are applicable for locking and which are not
restricted by locking.
88 Chapter 4

Programming with VISA
Using Locks
Example: Exclusive
Lock

This example shows a session gaining an exclusive lock to perform the
viPrintf and viScanf VISA operations on a GPIB device. It then
releases the lock via the viUnlock function.

/* lockexcl.c
This example program queries a GPIB device for an
identification string and prints the results. Note
that you may need to change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viPrintf (vi, "*RST\n");

/* Make sure no other process or thread does anything
to this resource between viPrintf and viScanf calls */

viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,
VI_NULL);

/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
viScanf (vi, "%t", &buf);
/* Unlock this session so other processes and threads
can use it */
viUnlock (vi);

/* Print results */
printf ("Instrument identification string: %s\n",
buf);
/* Close session */
viClose (vi);
viClose (defaultRM);}
Chapter 4 89

Programming with VISA
Using Locks
Example: Shared
Lock

This example shows a session gaining a shared lock with the accessKey
called lockkey. Other sessions can now use this accessKey in the
requestedKey parameter of the viLock function to share access on the
locked resource. This example then shows the original session acquiring an
exclusive lock while maintaining its shared lock.

When the session holding the exclusive lock unlocks the resource via the
viUnlock function, all the sessions sharing the lock again have all the
access privileges associated with the shared lock.

/* lockshr.c
This example program queries a GPIB device for an
identification string and prints the results. Note
that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};
char lockkey [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR",

VI_NULL,VI_NULL,&vi);

/* acquire a shared lock so only this process and
processes

that we know about can access this resource */
viLock (vi, VI_SHARED_LOCK, 2000, VI_NULL, lockkey);

/* at this time, we can make 'lockkey' available to
other processes that we know about. This can be done
with shared memory or other inter-process communication
methods. These other processes can then call
"viLock(vi,VI_SHARED_LOCK, 2000, lockkey, lockkey)"
and they will also have access to this resource. */

/* Initialize device */
viPrintf (vi, "*RST\n");
90 Chapter 4

Programming with VISA
Using Locks
/* Make sure no other process or thread does anything
to this resource between the viPrintf() and the
viScanf()calls Note: this also locks out the processes
with which we shared our 'shared lock' key. */

viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,VI_NULL);
/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
viScanf (vi, "%t", &buf);

/* unlock this session so other processes and threads
can use it */
viUnlock (vi);

/* Print results */
printf ("Instrument identification string: %s\n",
buf);

/* release the shared lock also*/
viUnlock (vi);

/* Close session */
viClose (vi);
viClose (defaultRM);

}

Chapter 4 91

Programming with VISA
Using Locks
Notes:
92 Chapter 4

5

Programming via GPIB and VXI
93

Programming via GPIB and VXI

VISA supports three interfaces you can use to access GPIB and VXI
instruments: GPIB, VXI, and GPIB-VXI. This chapter provides information to
program GPIB and VXI devices via the GPIB, VXI or GPIB-VXI interfaces,
including:

� GPIB and VXI Interfaces Overview
� Using High-Level Memory Functions
� Using Low-Level Memory Functions
� Using High/Low-Level Memory I/O Methods
� Using the Memory Access Resource
� Using VXI-Specific Attributes

See Chapter 4 - Programming with VISA for general information on VISA
programming for the GPIB, VXI, and GPIB-VXI interfaces. See Chapter 7 -
VISA Language Reference for information on the specific VISA functions.
94 Chapter 5

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
GPIB and VXI Interfaces Overview
This section provides an overview of the GPIB, GPIB-VXI, and VXI
interfaces, including:

� General Interface Information
� GPIB Interfaces Overview
� VXI Interfaces Overview
� GPIB-VXI Interfaces Overview

General Interface Information
VISA supports three interfaces you can use to access instruments or
devices: GPIB, VXI, and GPIB-VXI. The GPIB interface can be used to
access VXI instruments via a Command Module. In addition, the VXI
backplane can be directly accessed with the VXI or GPIB-VXI interfaces.

What is an IO
Interface?

An IO interface can be defined as both a hardware interface and as a
software interface. The IO Config utility is used to associate a unique
interface name with a hardware interface. The IO Libraries use an Interface
Name or Logical Unit Number to identify an interface. This information is
passed in the parameter string of the viOpen function call in a VISA
program.

IO Config assigns an Interface Name and Logical Unit Number to the
interface hardware, and other necessary configuration values for an
interface when the interface is configured. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for IO Config information.

VXI Device Types When using GPIB-VXI or VXI interfaces to directly access the VXI backplane
(in the VXI mainframe), you must know whether you are programming a
message-based or a register-based VXI device (instrument).

A message-based VXI device has its own processor that allows it to
interpret high-level commands such as Standard Commands for
Programmable Instruments (SCPI). When using VISA, you can place the
SCPI command within your VISA output function call. Then, the message-
based device interprets the SCPI command. In this case you can use the
VISA formatted I/O or non-formatted I/O functions and program the
message-based device as you would a GPIB device.
Chapter 5 95

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
However, if the message-based device has shared memory, you can access
the device's shared memory by doing register peeks and pokes. VISA
provides two different methods you can use to program directly to the
registers: high-level memory functions or low-level memory functions.

A register-based VXI device typically does not have a processor to interpret
high-level commands. Therefore, the device must be programmed with
register peeks and pokes directly to the device's registers. VISA provides
two different methods you can use to program register-based devices:
high-level memory functions or low-level memory functions.

GPIB Interfaces Overview
As shown in the following figure, a typical GPIB interface consists of a
Windows PC with one or more GPIB cards (PCI and/or ISA) cards installed
in the PC and one or more GPIB instruments connected to the GPIB cards
via GPIB cable. I/O communication between the PC and the instruments is
via the GPIB cards and the GPIB cable. This figure shows GPIB instruments
at addresses 3 and 5.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB Cable

82350 GPIB Card #2

GPIB Interface (82350 PCI GPIB Cards)
96 Chapter 5

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
Example: GPIB
(82350) Interface

The GPIB interface system in the following figure consists of a Windows PC
with two 82350 GPIB cards connected to three GPIB instruments via GPIB
cables. For this system, the IO Config utility has been used to assign GPIB
card #1 a VISA name of �GPIB0� and to assign GPIB card #2 a VISA name
of �GPIB1�. VISA addressing is as shown in the figure.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB CableInterface VISA Names

82350 GPIB Card #2

VISA Name

 "GPIB0"

 "GPIB1"

VISA Addressing

viOpen (... "GPIB0::5::INSTR"...)
viOpen (... "GPIB0::3::INSTR"...)
viOpen (... "GPIB1::3::INSTR"...)

GPIB Interface (82350 PCI GPIB Cards)

Open IO path to GPIB instrument at address 5 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #2
Chapter 5 97

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
VXI Interfaces Overview
As shown in the following figure, a typical VXI (E8491) interface consists of
an E8491 PC Card in a Windows PC that is connected to an E8491B
IEEE-1394 Module in a VXI mainframe via an IEEE-1394 to VXI cable. The
VXI mainframe also includes one or more VXI instruments.

Example: VXI
(E8491B) Interfaces

The VXI interface system in the following figure consists of a Windows PC
with an E8491 PC card that connects to an E8491B IEEE-1394 to VXI
Module in a VXI Mainframe. For this system, the three VXI instruments
shown have logical addresses 8, 16, and 24. The IO Config utility has been
used to assign the E8491 PC card a VISA name of �VXI0�. VISA addressing
is as shown in the figure.

For information on the E8491B module, see the Agilent E8491B User�s
Guide. For information on VXI instruments, see the applicable VXI
Instrument User�s Guide.

Windows PC

VXI (E8491) Interfaces

VXI Mainframe

. . .

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .
E8491 PC Card

IEEE-1394
to VXI
98 Chapter 5

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
E8491 PC Card

Windows PC

. . .

Interface VISA Name

VISA Name

"VXI0"

VISA Addressing

viOpen (... "VXI0::24::INSTR"...)

VXI Interface (E18491B IEEE-1394 to VXI Module)

Open IO path to VXI instrument at logical address 24 using
E8491 PC Card and E8491 IEEE-1394 to VXI Module

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeIEEE-1394 to VXI

LA 8 LA 24 LA 16
Chapter 5 99

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
GPIB-VXI Interfaces Overview
As shown in the following figure, a typical GPIB-VXI interface consists of a
GPIB card (82350 or equivalent) in a Windows PC that is connected via a
GPIB cable to an E1406A Command Module. The E1406A sends
commands to the VXI instruments in a VXI mainframe. There is no direct
access to the VXI backplane from the PC.

NOTE

For a GPIB-VXI interface, VISA uses a DLL supplied by the Command
Module vendor to translate the VISA VXI calls to Command Module
commands that are vendor-specific. The DLL required for Agilent/
Hewlett-Packard Command Modules is installed by the Agilent IO
Libraries Installer. This DLL is installed by default when Agilent VISA
is installed.

GPIB Card

Windows PC

. . .

GPIB-VXI (E1406A) Interfaces

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeGPIB
100 Chapter 5

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview
Example: GPIB-VXI
(E1406A) Interface

The GPIB-VXI interface system in the following figure consists of a Windows
PC with an 82350 GPIB card that connects to an E1406A Command Module
in a VXI Mainframe. The VXI mainframe includes one or more VXI
instruments.

When the IO Libraries were installed, a GPIB-VXI driver with GPIB address
9 was also installed and the E1406A was configured for primary address 9
and logical address (LA) 0. The three VXI instruments shown have logical
addresses 8, 16, and 24.

The IO Config utility has been used to assign the GPIB-VXI driver a VISA
Name of �GPIB-VXI0� and to assign the 82350 GPIB card a VISA name of
�GPIB0�. VISA addressing is as shown in the figure.

For information on the E1406A Command Module, see the Agilent E1406A
Command Module User�s Guide. For information on VXI instruments, see
the applicable VXI instrument User�s Guide.

82350 GPIB Card

Windows PC

. . .

Interface VISA Name

VISA Name

"GPIB-VXI0"

"GPIB0"

VISA Addressing

viOpen (... "GPIB-VXI0::24::INSTR"...)

GPIB-VXI Interface (E1406A Command Module)

Open IO path to VXI instrument at logical address 24 using
82350 GPIB Card and E1406A VXI Command Module at
GPIB primary address 9

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI Mainframe

GPIB

GPIB-VXI Driver
GPIB Address 9 Primary

Address 9

LA 0 LA 8 LA 24 LA 16
Chapter 5 101

Programming via GPIB and VXI
Using High-Level Memory Functions
Using High-Level Memory Functions
High-level memory functions allow you to access memory on the interface
through simple function calls. There is no need to map memory to a window.
Instead, when high-level memory functions are used, memory mapping and
direct register access are automatically done.

The tradeoff, however, is speed. High-level memory functions are easier to
use. However, since these functions encompass mapping of memory space
and direct register access, the associated overhead slows program
execution time. If speed is required, use the low-level memory functions
discussed in �Using Low-Level Memory Functions�.

Programming the Registers
High-level memory functions include the viIn and viOut functions for
transferring 8-, 16-, or 32-bit values, as well as the viMoveIn and
viMoveOut functions for transferring 8-, 16-, or 32-bit blocks of data into
or out of local memory. You can therefore program using 8-, 16-, or 32-bit
transfers.

High-Level Memory
Functions

This table summarizes the high-level memory functions.

Function Description

viIn8(vi, space, offset, val8); Reads 8 bits of data from the specified offset.

viIn16(vi, space, offset, val16); Reads 16 bits of data from the specified
offset.

viIn32(vi, space, offset, val32); Reads 32 bits of data from the specified
offset.

viOut8(vi, space, offset, val8); Writes 8 bits of data to the specified offset.

viOut16(vi, space, offset, val16); Writes 16 bits of data to the specified offset.

viOut32(vi, space, offset, val32); Writes 32 bits of data to the specified offset.

viMoveIn8(vi, space, offset, length, buf8); Moves an 8-bit block of data from the
specified offset to local memory.
102 Chapter 5

Programming via GPIB and VXI
Using High-Level Memory Functions
Using viIn and
viOut

When using the viIn and viOut high-level memory functions to program to
the device registers, all you need to specify is the session identifier, address
space, and the offset of the register. Memory mapping is done for you. For
example, in this function:

viIn32(vi, space, offset, val32);

vi is the session identifier and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device's
memory in the given address space.The space parameter determines which
memory location to map the space. Valid space values are:

� VI_A16_SPACE - Maps in VXI/MXI A16 address space
� VI_A24_SPACE - Maps in VXI/MXI A24 address space
� VI_A32_SPACE - Maps in VXI/MXI A32 address space

The val32 parameter is a pointer to where the data read will be stored.
If, instead, you write to the registers via the viOut32 function, the val32
parameter is a pointer to the data to write to the specified registers. If the
device specified by vi does not have memory in the specified address
space, an error is returned. The following example uses viIn16.

ViSession defaultRM, vi;
ViUInt16 value;
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24", VI_NULL, VI_NULL, &vi);
viIn16(vi, VI_A16_SPACE, 0x100, &value);

viMoveIn16(vi, space, offset, length, buf16); Moves a 16-bit block of data from the
specified offset to local memory.

viMoveIn32(vi, space, offset, length, buf32); Moves a 32-bit block of data from the
specified offset to local memory.

viMoveOut8(vi, space, offset, length, buf8); Moves an 8-bit block of data from local
memory to the specified offset.

viMoveOut16(vi, space, offset, length, buf16); Moves a 16-bit block of data from local
memory to the specified offset.

viMoveOut32(vi, space, offset, length, buf32); Moves a 32-bit block of data from local
memory to the specified offset.

Function Description
Chapter 5 103

Programming via GPIB and VXI
Using High-Level Memory Functions
Using viMoveIn
and viMoveOut

You can also use the viMoveIn and viMoveOut high-level memory
functions to move blocks of data to or from local memory. Specifically, the
viMoveIn function moves an 8-, 16-, or 32-bit block of data from the
specified offset to local memory, and the viMoveOut functions moves an
8-, 16-, or 32-bit block of data from local memory to the specified offset.
Again, the memory mapping is done for you.

For example, in this function:

viMoveIn32(vi, space, offset, length, buf32);
vi is the session identifier and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device's
memory in the given address space. The space parameter determines which
memory location to map the space and the length parameter specifies the
number of elements to transfer (8-, 16-, or 32-bits).

The buf32 parameter is a pointer to where the data read will be stored.
If, instead, you write to the registers via the viMoveOut32 function, the
buf32 parameter is a pointer to the data to write to the specified registers.

High-Level Memory Functions Examples
Two example programs follow that use the high-level memory functions to
read the ID and Device Type registers of a device at the VXI logical address
24. The contents of the registers are then printed out.

The first program uses the VXI interface and the second program accesses
the backplane with the GPIB-VXI interface. These two programs are
identical except for the string passed to viOpen.

Example: Using the
VXI Interface (High-
Level) Memory
Functions

This program uses high-level memory functions and the VXI interface to
read the ID and Device Type registers of a device at VXI0::24.

/* vxihl.c
This example program uses the high-level memory
functions to read the id and device type registers
of the device at VXI0::24. Change this address if
necessary. The register contents are then

displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>
void main () {
104 Chapter 5

Programming via GPIB and VXI
Using High-Level Memory Functions
ViSession defaultRM, dmm;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL,

&dmm);

/* Read instrument id register contents */
viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

/* Read device type register contents */
viIn16(dmm, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

Example: Using the
GPIB-VXI Interface
(High-Level)
Memory Functions

This program uses high-level memory functions and the GPIB-VXI interface
to read the ID and Device Type registers of a device at GPIB-VXI0::24.

/*gpibvxih.c
This example program uses the high-level memory

functions
to read the id and device type registers of the device

at
GPIB-VXI0::24. Change this address if necessary. The

register
contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main ()
{

ViSession defaultRM, dmm;
Chapter 5 105

Programming via GPIB and VXI
Using High-Level Memory Functions
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR",

VI_NULL,VI_NULL, &dmm);

/* Read instrument id register contents */
viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

/* Read device type register contents */
viIn16(dmm, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n",

devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

106 Chapter 5

Programming via GPIB and VXI
Using Low-Level Memory Functions
Using Low-Level Memory Functions
Low-level memory functions allow direct access to memory on the interface
just as do high-level memory functions. However, with low-level memory
function calls, you must map a range of addresses and directly access the
registers with low-level memory functions, such as viPeek32 and
viPoke32.

There is more programming effort required when using low-level memory
functions. However, the program execution speed can increase.
Additionally, to increase program execution speed, the low-level memory
functions do not return error codes.

Programming the Registers
When using the low-level memory functions for direct register access, you
must first map a range of addresses using the viMapAddress function.
Next, you can send a series of peeks and pokes using the viPeek and
viPoke low-level memory functions. Then, you must free the address
window using the viUnmapAddress function. A process you could use is:

1 Map memory space using viMapAddress.

2 Read and write to the register's contents using viPeek32 and
viPoke32.

3 Unmap the memory space using viUnmapAddress.

Low-Level Memory
Functions

You can program the registers using low-level functions for 8-, 16-, or 32-bit
transfers. This table summarizes the low-level memory functions.

Function Description

viMapAddress(vi, mapSpace,
mapBase, mapSize, access,
suggested, address);

Maps the specified memory
space.

viPeek8(vi, addr, val8); Reads 8 bits of data from address
specified.

viPeek16(vi, addr, val16); Reads 16 bits of data from
address specified.
Chapter 5 107

Programming via GPIB and VXI
Using Low-Level Memory Functions
Mapping Memory
Space

When using VISA to access the device's registers, you must map memory
space into your process space. For a given session, you can have only one
map at a time. To map space into your process, use the VISA
viMapAddress function:

viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested,
address);
This function maps space for the device specified by the vi session.
mapBase, mapSize, and suggested are used to indicate the offset of the
memory to be mapped, amount of memory to map, and a suggested starting
location, respectively. mapSpace determines which memory location to map
the space. The following are valid mapSpace choices:

VI_A16_SPACE - Maps in VXI/MXI A16 address space
VI_A24_SPACE - Maps in VXI/MXI A24 address space
VI_A32_SPACE - Maps in VXI/MXI A32 address space

A pointer to the address space where the memory was mapped is returned
in the address parameter. If the device specified by vi does not have
memory in the specified address space, an error is returned. Some example
viMapAddress function calls are:

/* Maps to A32 address space */
viMapAddress(vi, VI_A32_SPACE, 0x000, 0x100, VI_FALSE,

VI_NULL,&address);
/* Maps to A24 address space */

viMapAddress(vi, VI_A24_SPACE, 0x00, 0x80, VI_FALSE,
VI_NULL,&address);

viPeek32(vi, addr, val32); Reads 32 bits of data from
address specified.

viPoke8(vi, addr, val8); Writes 8 bits of data to address
specified.

viPoke16(vi, addr, val16); Writes 16 bits of data to address
specified.

viPoke32(vi, addr, val32); Writes 32 bits of data to address
specified.

viUnmapAddress(vi); Unmaps memory space
previously mapped.

Function Description
108 Chapter 5

Programming via GPIB and VXI
Using Low-Level Memory Functions
Reading and Writing
to Device Registers

When you have mapped the memory space, use the VISA low-level memory
functions to access the device's registers. First, determine which device
register you need to access. Then, you need to know the register's offset.
See the applicable instrument User manual for a description of the registers
and register locations. You can then use this information and the VISA low-
level functions to access the device registers.

Example: Using
viPeek16

An example using viPeek16 follows.

ViSession defaultRM, vi;
ViUInt16 value;
ViAddr address;
ViUInt16 value;
.
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24::INSTR", VI_NULL, VI_NULL,

&vi);
viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04, VI_FALSE,

VI_NULL, &address);
viPeek16(vi, addr, &value)

Unmapping Memory
Space

Make sure you use the viUnmapAddress function to unmap the memory
space when it is no longer needed. Unmapping memory space makes the
window available for the system to reallocate.

Low-Level Memory Functions Examples
Two example programs follow that use the low-level memory functions to
read the ID and Device Type registers of the device at VXI logical address
24. The contents of the registers are then printed out. The first program uses
the VXI interface and the second program uses the GPIB-VXI interface to
access the VXI backplane. These two programs are identical except for the
string passed to viOpen.

Example: Using the
VXI Interface (Low-
Level) Memory
Functions

This program uses low-level memory functions and the VXI interface to read
the ID and Device Type registers of a device at VXI0::24.

/*vxill.c
This example program uses the low-level memory
functions to read the id and device type registers
of the device at VXI0::24. Change this address if
necessary. The register contents are then displayed.*/
Chapter 5 109

Programming via GPIB and VXI
Using Low-Level Memory Functions
#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,

VI_NULL, &dmm);

/* Map into memory space */
viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10,

VI_FALSE,VI_NULL, &address);

/* Read instrument id register contents */
viPeek16(dmm, address, &id_reg);

/* Read device type register contents */
/* ViAddr is defined as a void so we must cast
/* it to something else to do pointer arithmetic */
viPeek16(dmm, (ViAddr)((ViUInt16 *)address + 0x01),

&devtype_reg);

/* Unmap memory space */
viUnmapAddress(dmm);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

110 Chapter 5

Programming via GPIB and VXI
Using Low-Level Memory Functions
Example: Using the
GPIB-VXI Interface
(Low-Level) Memory
Functions

This program uses low-level memory functions and the GPIB-VXI interface
to read the ID and Device Type registers of a device at GPIB-VXI0::24.

/*gpibvxil.c
This example program uses the low-level memory
functions to read the id and device type registers
of the device at GPIB-VXI0::24. Change this address
if necessary. Register contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>
void main () {

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,

VI_NULL,&dmm);

/* Map into memory space */
viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10, VI_FALSE,

VI_NULL, &address);

/* Read instrument id register contents */
viPeek16(dmm, address, &id_reg);

/* Read device type register contents */
/* ViAddr is defined as a void * so we must cast
/* it to something else to do pointer arithmetic */
viPeek16(dmm, (ViAddr)((ViUInt16 *)address + 0x01),

&devtype_reg);

/* Unmap memory space */
viUnmapAddress(dmm);
/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);
/* Close sessions */
viClose(dmm);
viClose(defaultRM);}
Chapter 5 111

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods
Using Low/High-Level Memory I/O Methods
VISA supports three different memory I/O methods for accessing memory
on the VXI backplane, as shown. All three of these access methods can be
used to read and write VXI memory in the A16, A24, and A32 address
spaces. The best method to use depends on the VISA program
characteristics.

� Low-level viPeek/viPoke
� viMapAddress
� viUnmapAddress
� viPeek8, viPeek16, viPeek32
� viPoke8, viPoke16, viPoke32

� High-level viIn/viOut
� viIn8, viIn16, viIn32
� viOut8, viOut16, viOut32

� High-level viMoveIn/viMoveOut
� viMoveIn8, viMoveIn16, viMoveIn32
� viMoveOut8, viMoveOut16, viMoveOut32

Using Low-Level viPeek/viPoke
Low-level viPeek/viPoke is the most efficient in programs that require
repeated access to different addresses in the same memory space.

The advantages of low-level viPeek/viPoke are:

� Individual viPeek/viPoke calls are faster than viIn/viOut or
viMoveIn/viMoveOut calls.

� Memory pointer may be directly dereferenced in some cases for the
lowest possible overhead.

The disadvantages of low-level viPeek/viPoke are:

� viMapAddress call is required to set up mapping before
viPeek/viPoke can be used.

� viPeek/viPoke calls do not return status codes.
� Only one active viMapAddress is allowed per vi session.
� There may be a limit to the number of simultaneous active

viMapAddress calls per process or system.
112 Chapter 5

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods
Using High-level viIn/viOut
High-level viIn/viOut calls are best in situations where a few widely
scattered memory access are required and speed is not a major
consideration.

The advantages high-level viIn/viOut are:

� Simplest method to implement.
� No limit on number of active maps.
� A16, A24, and A32 memory access can be mixed in a single vi

session.

The disadvantage of high-level viIn/viOut calls is that they are slower
than viPeek/viPoke.

Using High-level viMoveIn/viMoveOut
High-level viMoveIn/viMoveOut calls provide the highest possible
performance for transferring blocks of data to or from the VXI backplane.
Although these calls have higher initial overhead than the viPeek/viPoke
calls, they are optimized on each platform to provide the fastest possible
transfer rate for large blocks of data.

For small blocks, the overhead associated with viMoveIn/voMoveOut
may actually make these calls longer than an equivalent loop of viIn/
viOut calls. The block size at which viMoveIn/viMoveOut becomes
faster depends on the particular platform and processor speed.

The advantages of high-level viMoveIn/viMoveOut are:

� Simple to use.
� No limit on number of active maps.
� A16, A24, and A32 memory access can be mixed in a single vi

session.
� Provides the best performance when transferring large blocks of

data.
� Supports both block and FIFO mode.

The disadvantage of viMoveIn/viMoveOut calls is that they have higher
initial overhead than viPeek/viPoke.
Chapter 5 113

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods
Example: Using VXI
Memory I/O

This program demonstrates using various types of VXI memory I/O.

/* memio.c
This example program demonstrates the use of various
memory I/O methods in VISA. */

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST "VXI0::24::INSTR"

void main () {
ViSession defaultRM, vi;
ViAddr address;
ViUInt16 accessMode;
unsigned short *memPtr16;
unsigned short id_reg;
unsigned short devtype_reg;
unsigned short memArray[2];

/*Open default resource manager and session to instr*/
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, VXI_INST, VI_NULL,VI_NULL, &vi);

/* ==
Low level memory I/O = viPeek16 = direct memory
dereference (when allowed)
==*/

/* Map into memory space */
viMapAddress (vi, VI_A16_SPACE, 0x00, 0x10, VI_FALSE,

VI_NULL, &address);

/* ===
Using viPeek
==*/

Read instrument id register contents */
viPeek16 (vi, address, &id_reg);

/* Read device type register contents
ViAddr is defined as a (void *) so we must cast it
to something else in order to do pointer arithmetic. */
114 Chapter 5

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods
viPeek16 (vi, (ViAddr)((ViUInt16 *)address + 0x01),
&devtype_reg);

/* Print results */
printf (" viPeek16: ID Register = 0x%4X\n", id_reg);
printf (" viPeek16: Device Type Register = 0x%4X\n",

devtype_reg);

/* Use direct memory dereferencing if supported */
viGetAttribute(vi, VI_ATTR_WIN_ACCESS, &accessMode);
if (accessMode == VI_DEREF_ADDR) {

/* assign pointer to variable of correct type */
memPtr16 = (unsigned short *)address;

/* do the actual memory reads */
id_reg = *memPtr16;
devtype_reg = *(memPtr16+1);

/* Print results */
printf ("dereference: ID Register = 0x%4X\n",

id_reg);
printf ("dereference: Device Type Register = 0x%4X\n",

devtype_reg);
}

/* Unmap memory space */
viUnmapAddress (vi);

/*==
 High Level memory I/O = viIn16
 === */

/* Read instrument id register contents */
viIn16 (vi, VI_A16_SPACE, 0x00, &&id_reg);

/* Read device type register contents */
viIn16 (vi, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf (" viIn16: ID Register = 0x%4X\n", id_reg);
printf (" viIn16: Device Type Register = 0x%4X\n",
devtype_reg);
Chapter 5 115

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods
/* ==
High Level block memory I/O = viMoveIn16

The viMoveIn/viMoveOut commands do both block read/
write and FIFO read write. These commands offer the
best performance for reading and writing large data
blocks on the VXI backplane. For this example we are
only moving 2 words at a time. Normally, these
functions would be used to move much larger blocks of data.

If the value of VI_ATTR_SRC_INCREMENT is 1 (the
default),viMoveIn does a block read. If the value of
VI_ATTR_SRC_INCREMENT is 0, viMoveIn does a FIFO read.
If the value of VI_ATTR_DEST_INCREMENT is 1 (the default),
viMoveOut does a block write. If the value of
VI_ATTR_DEST_INCREMENT is 0, viMoveOut does a FIFO write.
== */

/* Demonstrate block read.
Read instrument id register and device type register
into an array.*/
viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2, memArray);

/* Print results */
printf (" viMoveIn16: ID Register = 0x%4X\n",

memArray[0]);
printf (" viMoveIn16: Device Type Register = 0x%4X\n",
memArray[1]);

/* Demonstrate FIFO read.
First set the source increment to 0 so we will
repetitively read from the same memory location.*/
viSetAttribute(vi, VI_ATTR_SRC_INCREMENT, 0);

/* Do a FIFO read of the Id Register */
viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2, memArray);

/* Print results */
printf (" viMoveIn16: 1 ID Register = 0x%4X\n",

memArray[0]);
printf (" viMoveIn16: 2 ID Register = 0x%4X\n",

 memArray[1]);
/* Close sessions */
viClose (vi);
viClose (defaultRM); }
116 Chapter 5

Programming via GPIB and VXI
Using the Memory Access Resource
Using the Memory Access Resource
For VISA 1.1 and later, the Memory Access (MEMACC) Resource type has
been added to VXI and GPIB-VXI. VXI::MEMACC and GPIB-VXI::MEMACC
allow access to all of the A16, A24, and A32 memory by providing the
controller with access to arbitrary registers or memory addresses on
memory-mapped buses.

The MEMACC resource, like any other resource, starts with the basic
operations and attributes of other VISA resources. For example, modifying
the state of an attribute is done via the the operation viSetAttribute
(see Appendix B - VISA Resource Classes for details).

Memory I/O Services
Memory I/O services include high-level memory I/O services and low-level
memory I/O services.

High-Level Memory
I/O Services

High-level Memory I/O services allow register-level access to the interfaces
that support direct memory access, such as the VXIbus, VMEbus, MXIbus,
or even VME or VXI memory through a system controlled by a GPIB-VXI
controller. A resource exists for each interface to which the controller has
access.

You can access memory on the interface bus through operations such as
viIn16 and viOut16. These operations encapsulate the map/unmap and
peek/poke operations found in the low-level service. There is no need to
explicitly map the memory to a window.

Low-Level Memory
I/O Services

Low-level Memory I/O services also allow register-level access to the
interfaces that support direct memory access. Before an application can use
the low-level service on the interface bus, it must map a range of addresses
using the operation viMapAddress.

Although the resource handles the allocation and operation of the window,
the programmer must free the window via viUnMapAddress when finished.
This makes the window available for the system to reallocate.
Chapter 5 117

Programming via GPIB and VXI
Using the Memory Access Resource
Example: MEMACC
Resource Program

This program demonstrates one way to use the MEMACC resource to open
the entire VXI A16 memory and then calculate an offset to address a specific
device.

/* peek16.c */
#include <stdio.h>
#include <stdlib.h>
#include <visa.h>

#define EXIT 1
#define NO_EXIT 0

/* This function simplifies checking for VISA errors. */
void checkError(ViSession vi, ViStatus status, char *errStr,
int doexit){

char buf[256];
if (status >= VI_SUCCESS)

return;
buf[0] = 0;
viStatusDesc(vi, status, buf);
printf("ERROR 0x%lx (%s)\n �%s�\n", status, errStr,

buf);
if (doexit == EXIT)

exit (1);
}

void main() {
ViSession drm;
ViSession vi;
ViUInt16 inData16 = 0;
ViUInt16 peekData16 = 0;
ViUInt8 *addr;
ViUInt16 *addr16;
ViStatus status;
ViUInt16 offset;

status = viOpenDefaultRM (&drm);
checkError(0, status, "viOpenDefaultRM", EXIT);

/* Open a session to the VXI MEMACC Resource*/
status = viOpen(drm, "vxi0::memacc", VI_NULL, VI_NULL,

&vi);
checkError (0, status, "viOpen", EXIT);
118 Chapter 5

Programming via GPIB and VXI
Using the Memory Access Resource
/* Calculate the A16 offset of the VXI REgisters for the
device at VXI logical address 8. */
offset = 0xc000 + 64 * 8;

/* Open a map to all of A16 memory space. */
status = viMapAddress(vi,VI_A16_SPACE,0,0x10000,

VI_FALSE,0,(ViPAddr)(&addr));
checkError(vi, status, "viMapAddress", EXIT);

/* Offset the address pointer retruned from
viMapAddress for use with viPeek16. */
addr16 = (ViUInt16 *) (addr + offset);

/* Peek the contents of the card�s ID register (offset 0
from card�s base address. Note that viPeek does not
return a status code. */
viPeek16(vi, addr16, &peekData16);

/* Now use viIn16 and read the contents of the same
register */
status = viIn16(vi, VI_A16_SPACE,

(ViBusAddress)offset,
&inData16);

checkError(vi, status, "viIn16", NO_EXIT);

/* Print the results. */
printf("inData16 : 0x%04hx\n", inData16);
printf("peekData16: ox%04hx\n", peekData16);

viClose(vi);
viClose (drm);

}

Chapter 5 119

Programming via GPIB and VXI
Using the Memory Access Resource
MEMACC Attribute Descriptions

Generic MEMACC
Attributes

The following Read Only attributes (VI_ATTR_TMO_VALUE is Read/Write)
provide general interface information.

VXI and GPIB-VXI
Specific MEMACC
Attributes

The following attributes, most of which are read/write, provide memory
window control information.

Attribute Description

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout
value of VI_TMO_IMMEDIATE means operation should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.
VI_ATTR_DMA_ALLOW_EN Specifies whether I/O accesses should use DMA (VI_TRUE) or

Programmed I/O (VI_FALSE).

Attribute Description

VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_INCREMENT Used in viMoveInxx operation to specify how much the
source offset is to be incremented after every transfer. The
default value is 1 and the viMoveInxx operation moves
from consecutive elements.

If this attribute is set to 0, the viMoveInxx operation will
always read from the same element, essentially treating the
source as a FIFO register.
120 Chapter 5

Programming via GPIB and VXI
Using the Memory Access Resource
VI_ATTR_DEST_INCREMENT Used in viMoveOutxx operation to specify how much the
destination offset is to be incremented after every transfer.
The default value is 1 and the viMoveOutxx operation
moves into consecutive elements.

If this attribute is set to 0, the viMoveOutxx operation will
always write to the same element, essentially treating the
destination as a FIFO register.

VI_ATTR_WIN_ACCESS Specifies modes in which the current window may be
addressed: not currently mapped, through the viPeekxx or
viPokexx operations only, or through operations and/or by
directly de-referencing the address parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR Base address of the interface bus to which this window is
mapped.

VI_ATTR_WIN_SIZE Size of the region mapped to this window.

VI_ATTR_SRC_BYTE_ORDER Specifies the byte order used in high-level access
operations, such as viInxx and viMoveInxx, when
reading from the source.

VI_ATTR_DEST_BYTE_ORDER Specifies the byte order used in high level access
operations, such as viOutxx and viMoveOutxx, when
writing to the destination.

VI_ATTR_WIN_BYTE_ORDER Specifies the byte order used in low-level access
operations, such as viMapAddress, viPeekxx, and
viPokexx, when accessing the mapped window.

VI_ATTR_SRC_ACCESS_PRIV Specifies the address modifier used in high-level access
operations, such as viInxx and viMoveInxx, when reading
from the source.

VI_ATTR_DEST_ACCESS_PRIV Specifies address modifier used in high-level access
operations such as viOutxx and viMoveOutxx, when
writing to destination.

VI_ATTR_WIN_ACCESS_PRIV Specifies address modifier used in low-level access
operations, such as viMapAddress, viPeekxx, and
viPokexx, when accessing the mapped window.

Attribute Description
Chapter 5 121

Programming via GPIB and VXI
Using the Memory Access Resource
GPIB-VXI Specific
MEMACC Attributes

The following Read Only attributes provide specific address information
about GPIB hardware.

MEMACC Resource
Event Attribute

The following Read Only events provide notification that an asynchronous
operation has completed.

Attribute Description

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to which the GPIB-VXI is
attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB-VXI controller used by the
session.

VI_ATTR_GPIB_SECONDARY_ADD
R

Secondary address of the GPIB-VXI controller used by
the session.

Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS Return code of the asynchronous I/O operation that has
completed.

VI_ATTR_JOB_ID Job ID of the asynchronous I/O operation that has
completed.

VI_ATTR_BUFFER Address of a buffer used in an asynchronous operation.

VI_ATTR_RET_COUNT Actual number of elements that were asynchronously
transferred.
122 Chapter 5

Programming via GPIB and VXI
Using VXI-Specific Attributes
Using VXI-Specific Attributes
VXI specific attributes can be useful to determine the state of your VXI
system. Attributes are read only and read/write. Read only attributes specify
things such as the logical address of the VXI device and information about
where your VXI device is mapped. this section shows how you might use
some of the VXI specific attributes. See Appendix B - VISA Resource
Classes for information on VISA attributes.

Using the Map Address as a Pointer
The VI_ATTR_WIN_ACCESS read-only attribute specifies how a window
can be accessed. You can access a mapped window with the VISA low-level
memory functions or with a C pointer if the address is de-referenced. To
determine how to access the window, read the VI_ATTR_WIN_ACCESS
attribute.

VI_ATTR_WIN_
ACCESS Settings

The VI_ATTR_WIN_ACCESS read-only attribute can be set to one of the
following:

Setting Description

VI_NMAPPED Specifies that the window is not mapped.

VI_USE_OPERS Specifies that the window is mapped and you can
only use the low-level memory functions to access
the data.

VI_DEREF_ADDR Specifies that the window is mapped and has a de-
referenced address. In this case you can use the
low-level memory functions to access the data, or
you can use a C pointer. Using a de-referenced C
pointer will allow faster access to data.
Chapter 5 123

Programming via GPIB and VXI
Using VXI-Specific Attributes
Example:
Determining
Window Mapping

This example shows how you can read the VI_ATTR_WIN_ACCESS
attribute and use the result to determine how to access memory.

ViAddr address;
ViUInt16 access;
ViUInt16 value;
.
.
.

viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04, VI_FALSE,
VI_NULL, &address);

viGetAttribute(vi, VI_ATTR_WIN_ACCESS, &access);
.
.
If(access==VI_USE_OPERS) {

viPeek16(vi, (ViAddr)(((ViUInt16 *)address) +
4/sizeof(ViUInt16)), &value)

}else if (access==VI_DEREF_ADDR){
value=*((ViUInt16 *)address+4/sizeof(ViUInt16));

}else if (access==VI_NMAPPED){
return error;

}
.
.

124 Chapter 5

Programming via GPIB and VXI
Using VXI-Specific Attributes
Setting the VXI Trigger Line
The VI_ATTR_TRIG_ID attribute is used to set the VXI trigger line. This
attribute is listed under generic attributes and defaults to VI_TRIG_SW
(software trigger). To set one of the VXI trigger lines, set the
VI_ATTR_TRIG_ID attribute as follows:

viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);
The above function sets the VXI trigger line to TTL trigger line 0
(VI_TRIG_TTL0). The following are valid VXI trigger lines. (Panel In is an
Agilent extension of the VISA specification.)

Once you set a VXI trigger line, you can set up an event handler to be called
when the trigger line fires. See Chapter 4 - Programming with VISA for more
information on setting up an event handler. Once the VI_EVENT_TRIG
event is enabled, the VI_ATTR_TRIG_ID becomes a read only attribute
and cannot be changed. You must set this attribute prior to enabling event
triggers.

The VI_ATTR_TRIG_ID attribute can also be used by viAssertTrigger
function to assert software or hardware triggers. If VI_ATTR_TRIG_ID is
VI_TRIG_SW, the device is sent a Word Serial Trigger command. If the
attribute is any other value, a hardware trigger is sent on the line
corresponding to the value of that attribute.

VXI Trigger Line VI_ATTR_TRIG_ID Value
TTL 0 VI_TRIG_TTL0

TTL 1 VI_TRIG_TTL1

TTL 2 VI_TRIG_TTL2

TTL 3 VI_TRIG_TTL3

TTL 4 VI_TRIG_TTL4

TTL 5 VI_TRIG_TTL5

TTL 6 VI_TRIG_TTL6

TTL 7 VI_TRIG_TTL7

ECL 0 VI_TRIG_ECL0

ECL 1 VI_TRIG_ECL1

Panel In VI_TRIG_PANEL_IN
Chapter 5 125

Programming via GPIB and VXI
Using VXI-Specific Attributes
Notes:
126 Chapter 5

6
Programming via LAN
127

Programming via LAN

This chapter gives guidelines for programming via a LAN (Local Area
Network). A LAN is a way to extend the control of instrumentation beyond
the limits of typical instrument interfaces. The chapter contents are:

� LAN Interfaces Overview
� Communicating with GPIB Devices via LAN

NOTE

This chapter does not describe programming using the VISA TCPIP
Interface Type. To use GPIB over the LAN, you must first configure the
TCPIP:LAN Client interface and then the VISA LAN Client during Agilent
IO Libraries configuration.

The TCPIP VISA interface type can be used directly to communicate with
GPIB devices over LAN, without having to configure a VISA LAN Client.

See the Agilent IO Libraries Installation and Configuration Guide for
Windows for LAN installation information and to start or stop the LAN
servers.
128 Chapter 6

Programming via LAN
LAN Interfaces Overview
LAN Interfaces Overview
This section provides an overview of LAN (Local Area Network) interfaces.
A LAN is a way to extend the control of instrumentation beyond the limits of
typical instrument interfaces. To communicate over the LAN, you must first
configure the LAN Client interface. There are three main types of LAN
interfaces:

� LAN Client
� VISA LAN Client
� LAN Server

LAN Hardware Architecture
The LAN software provided with the Agilent IO Libraries allows
instrumentation control over a LAN. Using standard LAN connections,
instruments can be controlled from computers that do not have special
interfaces for instrument control.

Client/Server Model The LAN software uses the client/server model of computing. Client/server
computing refers to a model where an application (the client) does not
perform all necessary tasks of the application itself. Instead, the client
makes requests of another computing device (the server) for certain
services.

As shown in the following figure, a LAN client (such as a Series 700 HP-UX
workstation or a Windows 95/98/Me/NT/2000 PC) makes VISA requests
over the network to a LAN server (such as a Series 700 HP-UX workstation,
a Windows 95/98/Me/NT/2000 PC, or an E2050 LAN/GPIB Gateway).

Gateway Operation The LAN server is connected to the instrumentation or devices to be
controlled. Once the LAN server has completed the requested operation on
the instrument or device, the LAN server sends a reply to the LAN client.
This reply contains requested data and status information that indicates
whether or not the operation was successful. The LAN server acts as a
gateway between the LAN software that the client system supports and the
instrument-specific interface that the device supports.
Chapter 6 129

Programming via LAN
LAN Interfaces Overview
Series 700 PCs or Windows 95/98/Me/2000/NT PCs

Client

LAN

Server

Series 700 PCs or
Windows 95/98/Me/
2000/NT PCs

GPIB
bus

GPIB
Instrument

GPIB
Instruments

E2050
LAN/GPIB
Gateway

GPIB bus
(or other)

LAN Instruments
(VXI-11.2 GPIB Emulation
 or
VXI-11.3 LAN Instruments)
130 Chapter 6

Programming via LAN
LAN Interfaces Overview
LAN Software Architecture
An IO interface can be defined as both a hardware interface and as a
software interface. You can use the IO Config utility to associate a unique
interface name with a hardware interface. The IO Libraries use an Interface
Name or Logical Unit Number to identify an interface. This information is
passed in the parameter string of the viOpen function call in a VISA
program.

IO Config assigns an Interface Name and Logical Unit Number to the
interface hardware, as well as other necessary configuration values for an
interface when the interface is configured. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for details on using IO
Config.

As shown in the following figure, the client system contains the LAN client
software and the LAN software (TCP/IP) needed to access the server
(gateway). The gateway contains the LAN server software, LAN (TCP/IP)
software, and the instrument driver software needed to communicate with
the client and to control the instruments or devices connected to the
gateway.

Client VISA System

Application

Agilent VISA

SICL

LAN Client

TCP

IP

LAN Interface

Server (Gateway) Instrument

LAN Server

 TCP
 Instrument
 IP Driver

LAN Interface

Instrument
Firmware

GPIB bus (or other)
Chapter 6 131

Programming via LAN
LAN Interfaces Overview
The LAN software is built on top of standard LAN networking protocols.
There are two LAN networking protocols provided with the Agilent IO
Libraries software. You can use one or both of these protocols when
configuring your systems (via Agilent IO Libraries configuration) to use
VISA over LAN.

� SICL-LAN Protocol is a networking protocol developed by Agilent
that is compatible with all VISA LAN products. This LAN networking
protocol is the default choice in the Agilent IO Libraries configuration
when configuring the LAN client. The SICL-LAN protocol on HP-UX
10.20, Windows 95/98/Me/2000/NT supports VISA operations over
LAN to GPIB interfaces.

� VXI-11 (TCP/IP Instrument Protocol) is a networking protocol
developed by the VXIbus Consortium based on the SICL-LAN
Protocol that permits interoperability of LAN software from different
vendors who meet the VXIbus Consortium standards.

When using either of these networking protocols, the LAN software uses the
TCP/IP protocol suite to pass messages between the LAN client and the
LAN server. The server accepts device I/O requests over the network from
the client and then proceeds to execute those I/O requests on a local
interface (GPIB, etc.).

By default, the LAN Client supports both protocols by automatically
detecting the protocol the server is using. When a VISA viOpen is
performed, the LAN Client driver first tries to connect using the SICL-LAN
protocol. If that fails, the driver will try to connect using the VXI-11 protocol.

If you want to control the protocol used, you can configure more than one
LAN Client interface and set each interface to a different protocol. The
protocol used will then depend on the interface you are connecting through.

Thus, you can have more than one SICL-LAN and one VXI-11 protocols for
your system. In VISA, the protocol used is determined by the configuration
settings and cannot be changed programatically. The LAN Client also
supports TCP/IP socket reads and writes.

When you have configured VISA LAN Client interfaces, you can then use
the interface name specified during configuration in a VISA viOpen call of
your program. However, the LAN server does not support simultaneous
connections from LAN clients using the SICL-LAN Protocol and from LAN
clients using VXI-11 (TCP/IP Instrument Protocol).
132 Chapter 6

Programming via LAN
LAN Interfaces Overview
There are three LAN servers that can be used with VISA: the E2050
LAN/GPIB Gateway, an HP Series 700 computer running HP-UX, or a PC
running Windows 95/98/Me/2000/NT. To use this capability, the LAN server
must have a local GPIB interface configured for I/O.

LAN Client Interface Overview
There are two main configurations for a LAN Client interface:

� LAN Client (Gateway)
� LAN Client (LAN)

This section provides an example of each configuration and shows
applicable VISA viOpen commands. See Chapter 7 - VISA Language
Reference for details on the VISA commands.
Chapter 6 133

Programming via LAN
LAN Interfaces Overview
Example: LAN
Client (Gateway)
Interface

The LAN Client interface system in the following figure consists of a
Windows PC with a LAN card, an E2050 LAN/GPIB gateway, and two GPIB
instruments. For this system, the IO Config utility has been used to assign
the LAN card a VISA name of �TCPIP0�.

With this name assigned to the interface, VISA addressing is as shown in
the figure and you can use the VISA viOpen command to open the I/O
paths to the GPIB instruments as shown in the figure.

5
LAN Card

Windows PC

3

GPIB InstrumentsLAN/GPIB GatewayInterface VISA Names

VISA Name

"TCPIP0"

VISA Addressing (Using LAN Client)

viOpen (... "TCPIP0::machine1::hpib,5::INSTR"...)
viOpen (..."TCPIP0::machine1::hpib,3::INSTR "...)

LAN Client (Gateway)

Open IO path to GPIB instrument at address 5
Open IO path to GPIB instrument at address 3

E2050

LAN GPIB Cable

machine1
hpib-name = hpib
134 Chapter 6

Programming via LAN
LAN Interfaces Overview
Example: LAN
Client (LAN)
Interface

The LAN Client interface system in the following figure consists of a
Windows PC with a LAN card and three LAN instruments. Instrument1 and
instrument2 are VXI-11.2 (GPIB Emulation) instruments and instrument3 is
a VXI-11.3 LAN instrument.

For this system, the IO Config utility has been used to assign the LAN card
a VISA name of �TCPIP0�. For the addressing examples, instrument1 has
been addressed by its machine name, instrument 2 has been addressed by
its IP address, and instrument3 by its LAN name (inst0).

Since unique names have been assigned by IO Config, you can now use the
VISA viOpen command to open the I/O paths to the GPIB instruments as
shown in the figure.

5

LAN Card

Windows PC LAN InstrumentsInterface VISA Name

VISA Name

"TCPIP0"

VISA Addressing (Using LAN Client)

viOpen (... "TCPIP0::instrument1::gpib0,5::INSTR"...)
viOpen (... "TCPIP0::1.2.3.4::gpib0,3::INSTR "...)
viOpen (... "TCPIP0::instrument3::inst0::INSTR"...)

LAN Client (LAN)

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3
Open IO path to LAN instrument3

LAN

instrument1 machine name

gpib0,5

3

1.2.3.4 IP address

gpib0,3

instrument3

inst0

VXI-11.2
 GPIB Emulation

VXI-11.2
 GPIB Emulation

VXI-11.3
 LAN instrument
Chapter 6 135

Programming via LAN
LAN Interfaces Overview
VISA LAN Client Interface Overview
There are two main configurations for a VISA LAN Client interface:

� VISA LAN Client (Gateway)
� VISA LAN Client (LAN)

This section provides an example of each configuration and shows
applicable VISA viOpen commands. See Chapter 7 - VISA Language
Reference for details on the VISA commands.

Example: VISA LAN
Client (Gateway)
Interface

The VISA LAN Client interface system in the following figure consists of a
Windows PC with a LAN card, an E2050 LAN/GPIB gateway, and two GPIB
instruments. The IO Config utility has been used to assign the LAN card
a VISA name of �TCPIP0�.

In addition, a VISA LAN Client has been configured with the interface names
and host names shown in the figure. Also, the E2050 LAN/GPIB Gateway
has been assigned a name of machine1 and an hpib-name = hpib.

Since unique names have been assigned by IO Config, you can now use the
VISA viOpen command to open the I/O paths to the GPIB instruments as
shown in the figure.

NOTE

You must install a LAN Client interface BEFORE you can use a VISA LAN
Client interface. See �Configuring LAN Client Interfaces� for details on
configuring LAN Client interfaces.
136 Chapter 6

Programming via LAN
LAN Interfaces Overview
5

LAN Card

Windows PC

3

GPIB InstrumentsLAN/GPIB GatewayInterface VISA Names

VISA Name

 "GPIB1"

"TCPIP0"

VISA Addressing (Using LAN Client)

viOpen (... "TCPIP0::machine1::hpib,5::INSTR"...)
viOpen (..."TCPIP0::machine1::hpib,3::INSTR "...)

VISA LAN Client (Gateway)

Open IO path to GPIB instrument at address 5
Open IO path to GPIB instrument at address 3

E2050

LAN GPIB Cable

VISA LAN Client
 "GPIB1"
 "lan"
 "machine1"
 "hpib"

machine1
hpib-name = hpib

VISA LAN Client Parameters

VISA Interface Name
LAN Client SICL Interface Name
Remote Host Name
Remote SICL Interface Name

"GPIB1"
"lan"
"machine1"
"hpib"

VISA Addressing (Using VISA LAN Client)

viOpen (... "GPIB1::5::INSTR"...)
viOpen (... "GPIB1::3::INSTR "...)

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3
Chapter 6 137

Programming via LAN
LAN Interfaces Overview
Example: VISA LAN
Client (LAN)
Interface

The VISA LAN Client interface system in the following figure consists of a
Windows PC with a LAN card and three LAN instruments. Instrument1 and
instrument2 are VXI-11.2 (GPIB Emulation) instruments and instrument3 is
a VXI-11.3 LAN instrument.

For this system, the IO Config utility has been used to assign the LAN card
a VISA name of �TCPIP0�. In addition, two VISA LAN Clients have been
configured with the interface names and host names shown in the figure.

For the addressing examples, instrument1 has been addressed by its
machine name, instrument 2 has been addressed by its IP address, and
instrument3 by its LAN name (inst0).

Since unique names have been assigned by IO Config, you can now use the
VISA viOpen command to open the I/O paths to the GPIB instruments as
shown in the figure. Note, however, that you cannot talk to instrument3 with
VISA LAN Client. You must use the LAN Client to talk to instrument3, since
instrument3 is not a remote gpib interface.

NOTE

When using the VXI-11 protocol with VISA LAN Client, the Remote SICL
Interface Name must be of the form gpibN where N is 0 or a positive
integer. This restriction does not apply to the SICL-LAN protocol.
138 Chapter 6

Programming via LAN
LAN Interfaces Overview
5

LAN Card

Windows PC LAN InstrumentsInterface VISA Names

VISA Name

 "GPIB1"

"GPIB2"

"TCPIP0"

VISA Addressing (Using LAN Client)

viOpen (... "TCPIP0::instrument1::gpib0,5::INSTR"...)
viOpen (... "TCPIP0::1.2.3.4::gpib0,3::INSTR "...)
viOpen (... "TCPIP0::instrument3::inst0::INSTR"...)

VISA LAN Client (LAN)

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3
Open IO path to LAN instrument3

LAN

VISA LAN Client
 "GPIB1"
 "lan"
 "instrument1"
 "gpib0"

instrument1 machine name

gpib0,5

3

1.2.3.4 IP address

gpib0,3

instrument3

inst0

VISA Addressing (Using VISA LAN Client)

VISA: viOpen (... "GPIB1::5::INSTR"...)
 viOpen (... "GPIB2::3::INSTR "...)
 Cannot talk to instrument3

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3

VISA LAN Client
 "GPIB2"
 "lan"
 "1.2.3.4"
 "gpib0"

VISA LAN Client Parameters

VISA Interface Name
LAN Client SICL Interface Name
Remote Host Name
Remote SICL Interface Name

GPIB1

"GPIB1"
"lan"
"instrument1"
"gpib0"

GPIB2

"GPIB2"
"lan"
"1.2.3.4"
"gpib0"

VXI-11.2
 GPIB Emulation

VXI-11.2
 GPIB Emulation

VXI-11.3
 LAN instrument
Chapter 6 139

Programming via LAN
LAN Interfaces Overview
LAN Server Interface Overview
This section provides an example of the LAN Server interface configuration
and shows applicable VISA viOpen commands. See Chapter 7 - VISA
Language Reference for details on the VISA commands.

Example: LAN
Server Interface

The LAN Server interface system in the following figure consists of a
Windows PC acting as a LAN client, a second PC acting as a LAN server,
and a GPIB instrument. The IO Config utility has been used to assign the
LAN card a VISA name of �TCPIP0�. Also, the GPIB card in the LAN server
PC has been assigned VISA name of �GPIB0�. The LAN server PC has
been assigned a name of machine2.

Since unique names have been assigned by IO Config, you can now use the
VISA viOpen command to open the I/O paths to the GPIB instruments as
shown in the figure.

5LAN Card

Windows PC
(LAN Client)

GPIB InstrumentInterface VISA Names

 VISA Name

LAN Card: "TCPIP0"
GPIB Card: "GPIB0"

VISA Addressing

viOpen (... "TCPIP0::machine2::hpib7,5::INSTR".....)

LAN Server (PC as Server)

Open IO path to GPIB instrument at address 5

GPIB Card

Windows PC
(LAN Server)

LAN GPIB

machine2

SICL name
hpib7
140 Chapter 6

Programming via LAN
Communicating with GPIB Devices via LAN
Communicating with GPIB Devices via LAN
VISA supports LAN-gatewayed sessions to communicate with configured
LAN servers. Since the LAN server configuration is determined by the type
of server present, the only action required by the user is to configure VISA
for a VISA LAN Client during Agilent IO Libraries configuration. See the
Agilent IO Libraries Installation and Configuration Guide for Windows for
information on configuring a VISA LAN Client.

Addressing a Session
In general, the rules to address a LAN session are the same as to address
a GPIB session. The only difference for a LAN session is that you use the
VISA Interface Name (provided during I/O configuration) that relates to the
VISA LAN Client. This example illustrates addressing a GPIB device
configured over the LAN.

Example: Opening a
Device Session

This example shows one way to open a device session with a GPIB device
at primary address 23. See Chapter 4 - Programming with VISA for more
information on addressing device sessions.

ViSession defaultRM, vi;.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::23::INSTR", VI_NULL,

VI_NULL,&vi);
.
.
viClose(vi);
viClose(defaultRM);

NOTE

A LAN session to a remote interface provides the same VISA function
support as if the interface was local, except that all VXI specific functions
are not supported over LAN.

GPIB0::7::0 A GPIB device at primary address 7 and secondary
address 0 on the GPIB interface. This GPIB interface
(GPIB0) is configured as a VISA LAN Client in the
Agilent IO Libraries configuration.
Chapter 6 141

Programming via LAN
Communicating with GPIB Devices via LAN
Example: LAN
Session

This program opens a session with a GPIB device and sends a comma
operator to send a comma-separated list. The program is intended to show
specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See Chapter 4 - Programming with VISA for
information on error trapping.

/*formatio.c
This example program makes a multimeter measurement
with a comma-separated list passed with formatted
I/O and prints the results. Note that you must change
the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
double res;
double list [2] = {1,0.001};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,

VI_NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Set up device and send comma-separated list */
viPrintf(vi, "CALC:DBM:REF 50\n");
viPrintf(vi, "MEAS:VOLT:AC? %,2f\n", list);

/* Read results */
viScanf(vi, "%lf", &res);

/* Print results */
printf ("Measurement Results: %lf\n", res);

/* Close session */
viClose(vi);
viClose(defaultRM);

}

142 Chapter 6

Programming via LAN
Communicating with GPIB Devices via LAN
Using Timeouts over LAN
The client/server architecture of the LAN software requires the use of two
timeout values: one for the client and one for the server.

Client/Server
Operation

The server's timeout value is specified by setting a VISA timeout via the
VI_ATTR_TMO_VALUE attribute. The server will also adjust the requested
value if infinity is requested. The client's timeout value is determined by the
values set when you configure the LAN Client during the Agilent IO
Libraries configuration. See the Agilent IO Libraries Installation and
Configuration Guide for configuration information.

When the client sends an I/O request to the server, the timeout value
determined by the values set with the VI_ATTR_TMO_VALUE attribute is
passed with the request. The client may also adjust the value sent to the
server if VI_TMO_INFINITE was specified. The server will use that timeout
in performing the I/O operation, just as if that timeout value had been used
on a local I/O operation.

If the server's operation is not complete in the specified time, the server will
send a reply to the client which indicates that a timeout occurred, and the
VISA call made by the application will return an error.

When the client sends an I/O request to the server, it starts a timer and
waits for the reply from the server. If the server does not reply in the time
specified, the client stops waiting for the reply from the server and returns
an error.

LAN Timeout Values The LAN Client configuration specifies two timeout-related configuration
values for the LAN software. These values are used by the software to
calculate timeout values. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on setting these values.

� Server Timeout. Timeout value passed to the server when an
application sets the VISA timeout to infinity(VI_TMO_INFINITE).
Value specifies the number of seconds the server will wait for the
operation to complete before returning an error. If this value is zero
(0), the server will wait forever.

� Client Timeout Delta. Value added to the VISA timeout value
(server's timeout value) to determine the LAN timeout value
(client's timeout value). Value specifies the number of seconds.
Chapter 6 143

Programming via LAN
Communicating with GPIB Devices via LAN
The timeouts are adjusted using the following algorithm:

� The VISA Timeout, which is sent to the server for the current call,
is adjusted if it is currently infinity (VI_TMO_INFINITE). In that
case, it will be set to the Server Timeout value.

� The LAN Timeout is adjusted if the VISA Timeout plus the Client
Timeout Delta is greater than the current LAN Timeout. In this case,
the LAN Timeout is set to the VISA Timeout plus the Client Timeout
Delta.

� The calculated LAN Timeout increases as necessary to meet the
needs of the application, but never decreases. This avoids the
overhead of readjusting the LAN Timeout every time the application
changes the VISA Timeout.

To change the defaults:

1 Run the IO Config utility (Windows) or the visacfg utility
(HP-UX).

2 Edit the LAN Client interface.

3 Change the Server Timeout or Client Timeout Delta parameter.
(See online help for information on changing these values.)

4 Restart the VISA LAN applications.

Application
Terminations and
Timeouts

If an application is killed either via Ctrl+C or the HP-UX kill command
during a VISA operation performed at the LAN server, the server will
continue to try the operation until the server's timeout is reached.

By default, the LAN server associated with an application using a timeout of
infinity that is killed may not discover that the client is no longer running for
up to two minutes. (If you are using a server other than the LAN server
supported with the product, check that server's documentation for its default
behavior.)

If both the LAN client and LAN server are configured to use a long timeout
value, the server may appear "hung." If this situation is encountered, the
LAN client (via the Server Timeout value) or the LAN server may be
configured to use a shorter timeout value.
144 Chapter 6

Programming via LAN
Communicating with GPIB Devices via LAN
If long timeouts must be used, the server may be reset. An HP-UX server
may be reset by logging into the server host and killing the running
siclland daemon(s). However, this procedure will affect all clients
connected to the server.

A Windows 95, Windows 98, Windows Me, Windows 2000, or Windows
NT server may be reset by typing Ctrl+C in the LAN Server window and then
restarting the server from the Agilent IO Libraries program group. This
procedure will also affect all clients connected to the server.

LAN Signal Handling on HP-UX
This section describes how to use signal handling and service requests over
LAN for HP-UX.

Using Signal
Handling over LAN
(HP-UX Only)

VISA uses SIGIO signals for SRQs on LAN interfaces on HP-UX. The
VISA LAN Client installs a signal handler to catch SIGIO signals. To enable
sharing of SIGIO signals with other portions of an application, the VISA LAN
SIGIO signal handler remembers the address of any previously installed
SIGIO handler and calls this handler after processing a SIGIO signal itself.

If your application installs a SIGIO handler, it should also remember the
address of a previously installed handler and call it before completing. The
signal number used with LAN (SIGIO) cannot be changed.
Chapter 6 145

Programming via LAN
Communicating with GPIB Devices via LAN
Notes:
146 Chapter 6

7

VISA Language Reference
147

VISA Language Reference

This chapter describes each function in the VISA library for the Windows
and HP-UX programming environments and provides an alphabetical list of
interfaces and Resource Classes associated with each functions. VISA
functions are listed in alphabetical order.
148 Chapter 7

VISA Language Reference
VISA Functions Overview
VISA Functions Overview
This section lists VISA functions by applicable interfaces and resource
classes, and lists VISA functions by type of operations performed.

VISA Functions by Interface/Resource
This table lists VISA functions, supported interfaces (GPIB, VXI, etc.) and
associated resource classes (INSTR, INTFC, etc.) that are implemented in
Agilent VISA.

Interface --- --- GPIB GPIB-
VXI

VXI TCPIP ASRL

Resource Class Find
List

Rsrc-
Mgr

INSTR INTFC INSTR INSTR MEM-
ACC

BACK-
PLANE

INSTR SOC-
KET

INSTR

viAssertIntrSignal

viAssertTrigger � � � � � � � �

viAssertUtilSignal

viBufRead � � � � � � � �

viBufWrite � � � � � � � �

viClear � � � � � � �

viClose � � � � � � � � � � �

viDisableEvent � � � � � � � � � �

viDiscardEvents � � � � � � � � � �

viEnableEvent � � � � � � � � � �

viEventHandler � � � � � � �

viFindNext � � � � � � � �

viFindRsrc � � � � � � � �

viFlush � � � � � � �

viGetAttribute � � � � � � � � �
Chapter 7 149

VISA Language Reference
VISA Functions Overview
viGpibCommand �

viGpibControlATN �

viGpibControlREN � � �

viGpibPassControl �

viGpibSendIFC �

viIn8 � � �

viIn16 � � �

viIn32 � � �

viInstallHandler � � � � � � � �

viLock � � � � � � �

viMapAddress � � �

viMapTrigger �

viMemAlloc

viMemFree

viMove � � �

viMoveAsynca � � �

viMoveIn8 � � �

viMoveIn16 � � �

viMoveIn32 � � �

viMoveOut8 � � �

a = implemented synchronously

Interface --- --- GPIB GPIB-
VXI

VXI TCPIP ASRL

Resource Class Find
List

Rsrc-
Mgr

INSTR INTFC INSTR INSTR MEM-
ACC

BACK-
PLANE

INSTR SOC-
KET

INSTR
150 Chapter 7

VISA Language Reference
VISA Functions Overview
viMoveOut16 � � �

viMoveOut32 � � �

viOpen � � � � � � � �

viOpenDefaultRM � � � � � � � �

viOut8 � � �

viOut16 � � �

viOut32 � � �

viParseRsrc � � � � � � � �

viPeek8 � � �

viPeek16 � � �

viPeek32 � � �

viPoke8 � � �

viPoke16 � � �

viPoke32 � � �

viPrintf � � � � � �

viQueryf � � � � �

viRead � � � � � � �

viReadAsynca � � � � � � �

viReadSTB � � � � � �

viReadToFile � � � � � � �

a = implemented synchronously

Interface --- --- GPIB GPIB-
VXI

VXI TCPIP ASRL

Resource Class Find
List

Rsrc-
Mgr

INSTR INTFC INSTR INSTR MEM-
ACC

BACK-
PLANE

INSTR SOC-
KET

INSTR
Chapter 7 151

VISA Language Reference
VISA Functions Overview
viScanf � � � � � � �

viSetAttribute � � � � � � � � �

viSetBuf � � � � � � �

viSPrintf � � � � � � �

viSScanf � � � � � � �

viStatusDesc � � � � � � � � �

viTerminate

viUninstallHandler � � � � � � � �

viUnlock � � � � � � �

viUnmapAddress � � �

viUnmapTrigger � � �

viVPrintf � � � � � � �

viVQueryf � � � � �

viVScanf � � � � � � �

viVSPrintf � � � � � � �

viVSScanf � � � � � � �

viVxiCommandQuery �

viWaitOnEvent � � � � � � � �

viWrite � � � � � � �

viWriteAsync � � � � � � �

viWriteFromFile � � � � � � �

Interface --- --- GPIB GPIB-
VXI

VXI TCPIP ASRL

Resource Class Find
List

Rsrc-
Mgr

INSTR INTFC INSTR INSTR MEM-
ACC

BACK-
PLANE

INSTR SOC-
KET

INSTR
152 Chapter 7

VISA Language Reference
VISA Functions Overview
VISA Functions by Type
This table show VISA functions implemented by Agilent VISA grouped by
type. The data types for the VISA function parameters (for example,
ViSession, etc.) are defined in the VISA declarations file (see
Appendix A - VISA Library Information).

Operation Function (Type Parameter1, Type Parameter2, ...);

Opening/Closing Sessions

Open Default RM Session viOpenDefaultRM(ViSession sesn);

Open Session viOpen(ViSession sesn, ViRsrc rsrcName, ViAccessMode
accessMode, ViUInt32 timeout, ViSession vi);

Close Session viClose(ViSession/ViEvent/ViFindList vi);

Control

Get Attribute viGetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViAttrState attrState);

Set Attribute viSetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViAttrState attrState);

Get Status Code Description viStatusDesc(ViSession/ViEvent/ViFindList vi,
ViStatus status, ViString desc);

Terminate Asynchronous
Operation

viTerminate(ViSession vi, ViUInt16 degree,
ViJobId jobId);

 Lock Resource viLock(ViSession vi, ViAccessMode lockType, ViUInt32
timeout, ViKeyId requestedKey, ViKeyId accessKey);

Unlock Resource viUnlock(ViSession vi);

Map Trigger Source Line to
Destination Line

viMapTrigger(ViSession vi, ViInt16 trigSrc, ViInt16
trigDest, ViUInt16 mode);

Map Trigger Line to Another
Trigger Line

viUnmapTrigger(ViSession vi, ViInt16 trigSrc, ViInt16
trigDest);
Chapter 7 153

VISA Language Reference
VISA Functions Overview
Event Handling/Interrupts

Enable Event viEnableEvent(ViSession vi, ViEventType eventType,
ViUInt16 mechanism, ViEventFilter context);

Disable Event viDisableEvent(ViSession vi, ViEventType eventType,
ViUInt16 mechanism);

Discard Events viDiscardEvents(ViSession vi, ViEventType
eventType,ViUInt16 mechanism);

Wait on Event viWaitOnEvent(ViSession vi, ViEventType
inEventType,ViUInt32 timeout, ViEventType
outEventType, ViEvent outContext);

 Install Handler viInstallHandler(ViSession vi, ViEventType eventType,
ViHndlr handler, ViAddr userHandle);

 Uninstall Handler viUninstallHandler(ViSession vi, ViEventType
eventType,ViHndlr handler, ViAddr userHandle);

Event Handler Prototype viEventHandler(ViSession vi, ViEventType eventType,
ViEvent context, ViAddr userHandle);

VXI Specific Series

Send Device a Command/Query
and/or Retrieve a Response

viVxiCommandQuery(ViSession vi, ViUInt16 mode,
ViUInt32 cmd, ViUInt32 response);

Searching

Find Device viFindRsrc(ViSession sesn, ViString expr, ViFindList
findList, ViUInt32 retcnt, ViRsrc instrDesc);

Find Next Device viFindNext(ViFindList findList, ViRsrc instrDesc);

Parse Resource String to Get
Interface Information

viParseRsrc(ViSession sesn, ViRsrc rsrcName, VIUInt16
intfType, VIUInt16 intfNum);

Basic I/O

Read Data from Device viRead(ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Write Data to Device viWrite(ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Read Data Asynchronously from
Device

viReadAsync(ViSession vi, ViBuf buf, ViUInt32
count, ViJobId jobId);

Write Data Asynchronously to
Device

viWriteAsync(ViSession vi, ViBuf buf, ViUInt32 count,
ViJobId jobId);

Operation Function (Type Parameter1, Type Parameter2, ...);
154 Chapter 7

VISA Language Reference
VISA Functions Overview
Basic I/O (continued)

Clear a Device viClear(ViSession vi);

Read Data Synchronously and
Store Data in File

viReadToFile (ViSession vi, ViConstString fileName,
ViUInt32 count, ViUInt32 retCount);

Write Data from File
Synchronously

viWriteFromFile (ViSession vi, ViConstString fileName,
ViUInt32 count, ViUInt32 retCount);

Assert Software/Hardware Trig viAssertTrigger(ViSession vi, ViUInt16 protocol);

Read Status Byte viReadSTB(ViSession vi, ViUInt16 status);

Formatted I/O

Set Size of Buffer viSetBuf(ViSession vi, ViUInt16 mask, ViUInt32 size);

Unformatted Read to Formatted
I/O Buffers

viBufRead(ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Unformatted Write to Formatted
I/O Buffers

viBufWrite (ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Flush Read and Write Buffers viFlush(ViSession vi, ViUInt16 mask);

Convert, Format, and Send
Parameters to a Device

viPrintf(ViSession vi, ViString writeFmt, arg1,arg2, ...);

Convert, Format, and Send
Parameters to a Device

viVPrintf(ViSession vi, ViString writeFmt, ViVAList
params);

Write Data to a Buffer viSPrintf(ViSession vi, ViBuf buf, ViString writeFmt, arg1,
arg2, ...);

Convert, Format, and Send
Parameters to a Buffer

viVSPrintf(ViSession vi, ViBuf buf, ViString writeFmt,
ViVAList params);

Receive Data from Device,
Format and Store Data

viScanf(ViSession vi, ViString readFmt, arg1, arg2, ...);

Receive Data from Device,
Format and Store Data

viVScanf(ViSession vi, ViString readFmt, ViVAList
params);

Receive Data from Buffer, Format
and Store Data

viSScanf(ViSession vi, ViBuf buf, ViString readFmt, arg1,
arg2, ...);

Receive Data from Buffer, Format
and Store Data

viVSScanf(ViSession vi, ViBuf buf, ViString readFmt,
ViVAList params);

Operation Function (Type Parameter1, Type Parameter2, ...);
Chapter 7 155

VISA Language Reference
VISA Functions Overview
Formatted I/O (continued)

Formatted Write and Read
Operation

viQueryf(ViSession vi, ViString writeFmt, ViString
readFmt, arg1, arg2, ...);

Formatted Write and Read
Operation

viVQueryf(ViSession vi, ViString writeFmt, ViString
readFmt, ViVAList params);

Memory I/O

Read 8-bit Value from Memory
Space

viIn8(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViUInt8 val8);

Read 16-bit Value from Memory
Space

viIn16(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViUInt16 val16);

Read 32-bit Value from Memory
Space

viIn32(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViUInt32 val32);

Write 8-bit Value to Memory
Space

viOut8(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViUInt8 val8);

Write 16-bit Value to Memory
Space

viOut16(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViUInt16 val16);

Write 32-bit Value to Memory
Space

viOut32(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViUInt32 val32);

Move data from source to
destination

viMove (ViSession vi, ViUInt16 srsSpace, ViBusAddress
srcOffset, ViUInt16 srcWidth, ViUInt16 destSpace,
ViBusAddress destOffset, ViUInt16 destWidth,
ViBusSize length)

Move data from source to
destination asynchronously

viMoveAsync (ViSession vi, ViUInt16 srsSpace,
ViBusAddress srcOffset, ViUInt16 srcWidth, ViUInt16
destSpace, ViBusAddress destOffset, ViUInt16
destWidth, ViBusSize length, ViJobId jobId)

Move 8-bit Value from Device
Memory to Local Memory

viMoveIn8(ViSession vi, ViUInt16 space, ViBusAddress
offset,ViBusSize length, ViAUInt8 buf8);

Move 16-bit Value from Device
Memory to Local Memory

viMoveIn16(ViSession vi, ViUInt16 space, ViBusAddress
offset,ViBusSize length, ViAUInt16 buf16);

Move 32-bit Value from Device
Memory to Local Memory

viMoveIn32(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViBusSize length, ViAUInt32 buf32);

Move 8-bit Value from Local
Memory to Device Memory

viMoveOut8(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViBusSize length, ViAUInt8 buf8);

Operation Function (Type Parameter1, Type Parameter2, ...);
156 Chapter 7

VISA Language Reference
VISA Functions Overview
Memory I/O (continued)

Move 16-bit Value from Local
Memory to Device Memory

viMoveOut16(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length,
ViAUInt16 buf16);

Move 32-bit Value from Local
Memory to Device Memory

viMoveOut32(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length,
ViAUInt32 buf32);

Map Memory Space viMapAddress(ViSession vi, ViUInt16 mapSpace,
ViBusAddress mapBase, ViBusSize mapSize,
ViBoolean access, ViAddr suggested, ViAddr address);

Unmap Memory Space viUnmapAddress(ViSession vi);

Read 8-bit Value from Address viPeek8(ViSession vi, ViAddr addr, ViUInt8 val8);

Read 16-bit Value from Address viPeek16(ViSession vi, ViAddr addr, ViUInt16 val16);

Read 32-bit Value from Address viPeek32(ViSession vi, ViAddr addr, ViUInt32 val32);

Write 8-bit Value to Address viPoke8(ViSession vi, ViAddr addr, ViUInt8 val8);

Write 16-bit Value to Address viPoke16(ViSession vi, ViAddr addr, ViUInt16 val16);

Write 32-bit Value to Address viPoke32(ViSession vi, ViAddr addr, ViUInt32 val32);

GPIB Specific Services

Control GPIB REN Interface Line viGpibControlREN(ViSession vi, ViUInt16 mode);

Control GPIB ATN Interface Line viGpibControlATN(ViSession vi, ViUInt16 mode);

Write GPIB Command Bytes
on the bus

viGpibCommand(ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Tell GPIB Device to Become
Controller in Charge (CIC)

viGpibPassControl(ViSession vi, ViUInt16 primAddr,
ViUInt16 secAddr);

Pulse Interface Clear (IFC) Line viGpibSendIFC(ViSession vi);

Operation Function (Type Parameter1, Type Parameter2, ...);
Chapter 7 157

VISA Language Reference
viAssertIntrSignal
viAssertIntrSignal

Syntax viAssertIntrSignal(ViSession vi, ViInt16 mode,
ViUInt32 statusID);

Description Asserts the specified device interrupt or signal. This operation can be used
to assert a device interrupt condition. In VXI, for example, this can be done
with either a VXI signal or a VXI interrupt. On certain bus types, the
statusID parameter may be ignored.

Parameters

Special Values for mode Parameter

NOTE

This function is not implemented in Agilent VISA.

Name Direction Type Description

mode IN ViInt16 This specifies how to assert the
interrupt. See the Description section
for actual values.

statusID IN ViUInte32 This is the status value to be presented
during an interrupt acknowledge cycle.

vi IN ViSession Unique logical identifier to a session.

mode Action Description

VI_ASSERT_IRQ1 -
VI_ASSERT_IRQ7

Send the interrupt via the specified
VXI/VME IRQ line. This uses the standard VXI/VME
ROAK (release on acknowledge) interrupt mechanism
rather than the older VME RORA (release on register
access) mechanism.

VI_ASSERT_SIGNAL Send the notification via a VXI signal.

VI_ASSERT_USE_
ASSIGNED

Use whatever notification method that has been
assigned to the local device.
158 Chapter 7

VISA Language Reference
viAssertIntrSignal
Return Values

See Also BACKPLANE Resource Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INTR_PENDING An interrupt is still pending from a previous
call.

VI_ERROR_INV_MODE The value specified by the mode parameter is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_INTR The interface cannot generate an interrupt on
the requested level or with the requested
statusID value.

VI_ERROR_NSUP_MODE The specified mode is not supported by this
VISA implementation.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
Chapter 7 159

VISA Language Reference
viAssertTrigger
viAssertTrigger

Syntax viAssertTrigger(ViSession vi, ViUInt16 protocol);

Description Assert software or hardware trigger. This operation will source a software or
hardware trigger dependent on the interface type. For a GPIB device, the
device is addressed to listen and then the GPIB GET command is sent.

For a VXI device, if VI_ATTR_TRIG_ID is VI_TRIG_SW, the device is sent
the Word Serial Trigger command. For any other values of the attribute, a
hardware trigger is sent on the line corresponding to the value of that
attribute. For a GPIB device, if VI_ATTR_TRIG_ID is VI_TRIG_SW, the
device is addressed to Listen and a Group Execute Trigger (GET) is sent.

For a serial session to a Serial device or TCPIP socket, if
VI_ATTR_IO_PROT is VI_PROT_4882_STRS, the device is sent the
string "*TRG\n". Otherwise, this operation is not valid.

In the Parameters table, the protocol values are:

� VI_TRIG_PROT_DEFAULT is VI_TRIG_PROT_SYNC for VXI
� VI_TRIG_PROT_ON asserts the trigger
� VI_TRIG_PROT_OFF deasserts the trigger
� VI_TRIG_PROT_SYNC pulses the trigger (assert followed by

deassert)

Parameters

NOTE

This function is not supported with the GPIB-VXI interface.

Name Direction Type Description

protocol IN ViUInt16 Trigger protocol to use during assertion.
Valid values are:
VI_TRIG_PROT_DEFAULT,
VI_TRIG_PROT_ON,
VI_TRIG_PROT_OFF, and
VI_TRIG_PROT_SYNC.

vi IN ViSession Unique logical identifier to a session.
160 Chapter 7

VISA Language Reference
viAssertTrigger
Return Values

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The specified trigger was successfully
asserted to the device.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session
has been lost.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error
occurred during transfer.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because setup
is invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_LINE_IN_USE The specified trigger line is currently in
use.

VI_ERROR_NCIC The interface associated with the given vi
is not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this
function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.
Chapter 7 161

VISA Language Reference
viAssertTrigger
See Also VI_ATTR_TRIG_ID attribute. Set this attribute to the trigger mechanism/
trigger line to use. VI_EVENT_TRIGGER description for details on trigger
specifiers.

VI_ERROR_RSRC_LOCKED Specified operation could not be
performed because the resource
identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before function
completed.

Error Codes Description
162 Chapter 7

VISA Language Reference
viAssertUtilSignal
viAssertUtilSignal

Syntax viAssertUtilSignal (ViSession vi, ViUInt16 line);

Description Asserts the specified utility bus signal. This operation can be used to assert
either the SYSFAIL or SYSRESET utility bus interrupts on the VXIbus
backplane. This operation is valid only on VXI Mainframe Backplane
(BACKPLANE) and on Servant Device-Side (SERVANT) resource sessions.

Parameters

Return Values

NOTE

This function is not supported in Agilent VISA.

Asserting SYSRESET (also known as HARD RESET in the VXI
specification) should be used only when it is necessary to promptly
terminate operation of all devices in a VXIbus system. This is a serious
action that always affects the entire VXIbus system.

Name Direction Type Description

line IN ViUInt16 Specifies the utility bus signal to assert.
This can be the value
VI_UTIL_ASSERT_SYSRESET,
VI_UTIL_ASSERT_SYSFAIL, or
VI_UTIL_DEASSERT_SYSFAIL

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.
Chapter 7 163

VISA Language Reference
viAssertUtilSignal
See Also BACKPLANE Resource Description

Error Codes Description

VI_ERROR_INV_LINE The value specified by the line parameter is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
164 Chapter 7

VISA Language Reference
viBufRead
viBufRead

Syntax viBufRead (ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Description Similar to viRead, except that the operation uses the formatted I/O read
buffer for holding data read from the device. This operation is similar to
viRead and does not perform any kind of data formatting. It differs from
viRead in that the data is read from the formatted I/O read buffer (the same
buffer as used by viScanf and related operations) rather than directly from
the device. This operation can intermix with the viScanf operation, but use
with the viRead operation is discouraged.

Parameters

Special Value for retCount Parameter

Return Values

Name Direction Type Description

buf OUT ViBuf Represents the location of a buffer
to receive data from the device.

count IN ViUInt32 Number of bytes to be read.

retCount OUT ViUInt32 Represents the location of an integer
that will be set to the number of bytes
actually transferred.

vi IN ViSession Unique logical identifier to a session.

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.
Chapter 7 165

VISA Language Reference
viBufRead
See Also viWrite, viScanf

Completion Codes Description

VI_SUCCESS The operation completed successfully and
the END indicator was received (for
interfaces that have END indicators).

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_SUCCESS_TERM_CHAR The specified termination character was read.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_IO An unknown I/O error occurred during
transfer.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.
166 Chapter 7

VISA Language Reference
viBufWrite
viBufWrite

Syntax viBufWrite (ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Description Similar to viWrite, except the data is written to the formatted I/O write
buffer rather than directly to the device. This operation is similar to viWrite
and does not perform any kind of data formatting.

It differs from viWrite in that the data is written to the formatted I/O write
buffer (the same buffer as used by viPrintf and related operations) rather
than directly to the device. This operation can intermix with the viPrintf
operation, but mixing it with the viWrite operation is discouraged.

If you pass VI_NULL as the retCount parameter to the viBufWrite
operation, the number of bytes transferred will not be returned. This may be
useful if it is important to know only whether the operation succeeded or
failed.

Parameters

Special Value for retCount Parameter

Name Direction Type Description

buf IN ViBuf Represents the location of a data block
to be sent to the device.

count IN ViUInt32 Number of bytes to be written.

retCount OUT ViUInt32 Represents the location of an integer
that will be set to the number of bytes
actually transferred.

vi IN ViSession Unique logical identifier to a session.

Value Action Description

VI_NULL Do not return the number of bytes transferred.
Chapter 7 167

VISA Language Reference
viBufWrite
Return Values

See Also viWrite, viBufRead

 Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_SETUP Unable to start write operation because
setup is invalid (due to attributes being set
to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during
transfer.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.
168 Chapter 7

VISA Language Reference
viClear
viClear

Syntax viClear(ViSession vi);

Description Clear a device. This operation performs an IEEE 488.1-style clear of the
device. For VXI, the Word Serial Clear command should be used. For GPIB
systems, the Selected Device Clear command should be used. For a
session to a Serial device or TCPIP socket, if VI_ATTR_IO_PROT is
VI_PROT_4882_STRS, the device is sent the string "*CLS\n". Otherwise,
this operation is not valid.

Parameters

Return Values

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has
been lost.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.
Chapter 7 169

VISA Language Reference
viClear
VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

Error Codes Description
170 Chapter 7

VISA Language Reference
viClose
 viClose

Syntax viClose(ViSession/ViEvent/ViFindList vi);

Description This function closes the specified resource manager session, device
session, find list (returned from the viFindRsrc function), or event context
(returned from the viWaitOnEvent function, or passed to an event
handler). In this process, all the data structures that had been allocated for
the specified vi are freed.

Parameters

Return Values

NOTE

The viClose function should not be called from within an event handler.
In VISA 1.1 and greater, viClose (VI_NULL) returns
VI_WARN_NULL_OBJECT rather than an error.

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Session closed successfully.

VI_WARN_NULL_OBJECT The specified object reference is uninitialized.
Chapter 7 171

VISA Language Reference
viClose
See Also viOpen, viFindRsrc, viWaitOnEvent, viEventHandler

Error Codes Description

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated
data structures corresponding to this session or
object reference.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).
172 Chapter 7

VISA Language Reference
viDisableEvent
viDisableEvent

Syntax viDisableEvent(ViSession vi, ViEventType eventType,
ViUInt16 mechanism);

Description This function disables servicing of an event identified by the eventType
parameter for the mechanisms specified in the mechanism parameter.
Specifying VI_ALL_ENABLED_EVENTS for the eventType parameter
allows a session to stop receiving all events.

The session can stop receiving queued events by specifying VI_QUEUE.
Applications can stop receiving callback events by specifying either
VI_HNDLR or VI_SUSPEND_HNDLR. Specifying VI_ALL_MECH disables
both the queuing and callback mechanisms.

viDisableEvent prevents new event occurrences from being added to
the queue(s). However, event occurrences already existing in the queue(s)
are not discarded.

Parameters

Name Direction Type Description

eventType IN ViEventType Logical event identifier. (See the
following tables.)

mechanism IN ViUInt16 Specifies event handling
mechanisms to be disabled.
The queuing mechanism is
disabled by specifying
VI_QUEUE.

The callback mechanism is
disabled by specifying VI_HNDLR
or VI_SUSPEND_HNDLR. It is
possible to disable both
mechanisms simultaneously
by specifying VI_ALL_MECH.

vi IN ViSession Unique logical identifier to a
session.
Chapter 7 173

VISA Language Reference
viDisableEvent
Special Value for eventType Parameter

The following events can be disabled:

Special Values for mechanism Parameter

Return Values

Value Action Description

VI_ALL_ENABLED_EVENTS Disable all events that were previously enabled.

Event Name Description

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.

Value Action Description

VI_ALL_MECH Disable this session from receiving the specified
event(s) via any mechanism.

VI_HNDLR or
VI_SUSPEND_HNDLR

Disable this session from receiving the specified
event(s) via a callback handler or a callback
queue.

VI_QUEUE Disable this session from receiving the specified
event(s) via the waiting queue.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least
one of the specified mechanisms.
174 Chapter 7

VISA Language Reference
viDisableEvent
See Also See the handler prototype viEventHandler for its parameter
description, and viEnableEvent. Also, see viInstallHandler and
viUninstallHandler descriptions for information about installing and
uninstalling event handlers. See event descriptions for context structure
definitions.

Error Codes Description

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).
Chapter 7 175

VISA Language Reference
viDiscardEvents
viDiscardEvents

Syntax viDiscardEvents(ViSession vi, ViEventType eventType,
ViUInt16 mechanism);

Description This function discards all pending occurrences of the specified event types
for the mechanisms specified in a given session. The information about all
the event occurrences which have not yet been handled is discarded. This
function is useful to remove event occurrences that an application no longer
needs.

The event occurrences discarded by applications are not available to a
session at a later time. This operation causes loss of event occurrences.
The viDiscardEvents operation does not apply to event contexts that
have already been delivered to the application.

Parameters

Name Direction Type Description

eventType IN ViEventType Logical event identifier. (See the
following tables.)

mechanism IN ViUInt16 Specifies the mechanisms for which
the events are to be discarded.
VI_QUEUE is specified for the
queuing mechanism and
VI_SUSPEND_HNDLR is specified
for the pending events in the
callback mechanism. It is possible
to specify both mechanisms
simultaneously by specifying
VI_ALL_MECH.

vi IN ViSession Unique logical identifier to a
session.
176 Chapter 7

VISA Language Reference
viDiscardEvents
Special Value for eventType Parameter

The following events can be discarded:

Special Values for mechanism Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Discard events of every type that is enabled.

Event Name Description

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.

Value Action Description

VI_ALL_MECH Discard the specified event(s) from all
mechanisms.

VI_QUEUE Discard the specified event(s) from the waiting
queue.

VI_SUSPEND_HNDLR Discard the specified event(s) from the callback
queue.
Chapter 7 177

VISA Language Reference
viDiscardEvents
Return Values

 See Also viEnableEvent, viWaitOnEvent, viInstallHandler

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue
was empty.

Error Codes Description

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).
178 Chapter 7

VISA Language Reference
viEnableEvent
viEnableEvent

Syntax viEnableEvent(ViSession vi, ViEventType eventType,
ViUInt16 mechanism, ViEventFilter context);

Description This function enables notification of an event identified by the eventType
parameter for mechanisms specified in the mechanism parameter. The
specified session can be enabled to queue events by specifying VI_QUEUE.

Applications can enable the session to invoke a callback function to execute
the handler by specifying VI_HNDLR. The applications are required to install
at least one handler to be enabled for this mode.

Specifying VI_SUSPEND_HNDLR enables the session to receive callbacks,
but the invocation of the handler is deferred to a later time. Successive calls
to this function replace the old callback mechanism with the new callback
mechanism.

Specifying VI_ALL_ENABLED_EVENTS for the eventType parameter refers
to all events which have previously been enabled on this session, making it
easier to switch between the two callback mechanisms for multiple events.

Event queuing and callback mechanisms operate completely independently.
As such, enabling and disabling of the two modes in done independently
(enabling one of the modes does not enable or disable the other mode).
For example, if viEnableEvent is called once with VI_HNDLR and called
a second time with VI_QUEUE, both modes would be enabled.

If viEnableEvent is called with the mechanism parameter equal to the
"bit-wise OR" of VI_SUSPEND_HNDLR and VI_HNDLR, viEnableEvent
returns VI_ERROR_INV_MECH.

NOTE

VISA cannot callback to a Visual Basic function. Thus, you can only use
the VI_QUEUE mechanism in viEnableEvent. There is no way to install
a VISA event handler in Visual Basic.
Chapter 7 179

VISA Language Reference
viEnableEvent
If the event handling mode is switched from VI_SUSPEND_HNDLR to
VI_HNDLR for an event type, handlers that are installed for the event are
called once for each occurrence of the corresponding event pending in the
session (and dequeued from the suspend handler queue) before switching
the modes.

A session enabled to receive events can start receiving events before the
viEnableEvent operation returns. In this case, the handlers set for an
event type are executed before the completion of the enable operation.

If the event handling mode is switched from VI_HNDLR to
VI_SUSPEND_HNDLR for an event type, handler invocation for occurrences
of the event type is deferred to a later time. If no handler is installed for an
event type, the request to enable the callback mechanism for the event type
returns VI_ERROR_HNDLR_NINSTALLED.

If a session has events pending in its queue(s) and viClose is invoked on
that session, all pending event occurrences and the associated event
contexts that have not yet been delivered to the application for that session
are freed by the system.

Parameters

Name Direction Type Description

context IN ViEventFilter VI_NULL (Not used for VISA 1.0.)

eventType IN ViEventType Logical event identifier.

mechanism IN ViUInt16 Specifies event handling
mechanisms to be enabled. The
queuing mechanism is enabled by
VI_QUEUE, and the callback
mechanism is enabled by
VI_HNDLR or
VI_SUSPEND_HNDLR.

It is possible to enable both
mechanisms simultaneously by
specifying "bit-wise OR" of
VI_QUEUE and one of the two mode
values for the callback mechanism.

vi IN ViSession Unique logical identifier to a
session.
180 Chapter 7

VISA Language Reference
viEnableEvent
Special Value for eventType Parameter

The following events can be enabled:

Special Values for mechanism Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Switch all events that were previously enabled to
the callback mechanism specified in the
mechanism parameter.

Event Name Description

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.

Value Action Description

VI_HNDLR Enable this session to receive the specified event via
a callback handler, which must have already been
installed via viInstallHandler.

VI_QUEUE Enable this session to receive the specified event via
the waiting queue. Events must be retrieved manually
via the viWaitOnEvent function.

VI_SUSPEND_HNDLR Enable this session to receive the specified event via
a callback queue. Events will not be delivered to the
session until viEnableEvent is invoked again with
the VI_HNDLR mechanism.

NOTE

Any combination of VISA-defined values for different parameters
of this function is also supported (except for VI_HNDLR and
VI_SUSPEND_HNDLR, which apply to different modes of the same
mechanism).
Chapter 7 181

VISA Language Reference
viEnableEvent
Return Values

See Also See the handler prototype viEventHandler for its parameter description
and viDisableEvent. Also, see the viInstallHandler and
viUninstallHandler descriptions for information about installing and
uninstalling event handlers.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN Specified event is already enabled for at
least one of the specified mechanisms.

Error Codes Description

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the
specified event. The session cannot be
enabled for the VI_HNDLR mode of the
callback mechanism.

VI_ERROR_INV_CONTEXT Specified event context is invalid.

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_MECH The specified mechanism is not supported
for the given event type.
182 Chapter 7

VISA Language Reference
viEventHandler
viEventHandler

Syntax viEventHandler(ViSession vi, ViEventType eventType,
ViEvent context, ViAddr userHandle);

Description This is a prototype for a function, which you define. The function you define
is called whenever a session receives an event and is enabled for handling
events in the VI_HNDLR mode. The handler services the event and returns
VI_SUCCESS on completion. VISA event handlers must be declared as
follows.

ViStatus _VI_FUNCH MyEventHandler(ViSession vi,
ViEventType eventType, ViEvent context,
ViAddr userHandle);

The _VI_FUNCH declaration is required to make sure the handler is of the
proper type. If _VI_FUNCH is not included, stack corruption may occur on
the function call or return. The _VI_FUNCH declaration is very important
since it declares the function of type stdcall which VISA requires. Visual
Studio C++ defaults to cdecl which will not work. When the handler returns,
it will generate an access violation because the stack gets corrupted.

Because each eventType defines its own context in terms of attributes, refer
to the appropriate event definition to determine which attributes can be
retrieved using the context parameter.

Because the event context must still be valid after the user handler returns
(so that VISA can free it up), an application should not invoke the viClose
operation on an event context passed to a user handler.

If the user handler will not return to VISA, the application should call
viClose on the event context to manually delete the event object. This
may occur when a handler throws a C++ exception in response to a VISA
exception event.

Normally, an application should return VI_SUCCESS from all callback
handlers. If a specific handler does not want other handlers to be invoked
for the given event for the given session, it should return
VI_SUCCESS_NCHAIN. No return value from a handler on one session
will affect callbacks on other sessions.
Chapter 7 183

VISA Language Reference
viEventHandler
This table lists events and associated read-only attributes implemented by
Agilent VISA that can be read to get event information on a specific event.
Use the viReadSTB function to read the status byte of the service request.

Instrument Control (INSTR) Resource Events

NOTE

Future versions of VISA (or specific implementations of VISA) may take
actions based on other return values, so users should return
VI_SUCCESS from handlers unless there is a specific reason to do
otherwise.

Event Name Attributes Data Type Range

VI_EVENT_SERVICE_
REQUEST

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_
REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_STOP

VI_ATTR_SIGP_STATUS_ID ViUInt16 0 to FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A
184 Chapter 7

VISA Language Reference
viEventHandler
Memory Access (MEMACC) Resource Events

GPIB Bus Interface (INTFC) Resource Events

Event Name Attributes Data Type Range

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A

Event Name Attributes Data Type Range

VI_EVENT_GPIB_CIC VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_RECV_CIC_
STATE

ViBoolean VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_TALK

VI_EVENT_GPIB_
LISTEN

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_
LISTEN

VI_EVENT_CLEAR VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_CLEAR

VI_EVENT_TRIGGER VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIGGER

VI_ATTR_RECV_TRIG_ID ViInt16 VI_TRIG_SW

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A
Chapter 7 185

VISA Language Reference
viEventHandler
VXI Mainframe Backplane (BACKPLANE) Resource Events

TCPIP Socket (SOCKET) Resource Events

Parameters

Event Name Attributes Data Type Range

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_VXI_VME_
SYSFAIL

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_
SYSFAIL

VI_EVENT_VXI_VME_
SYSRESET

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_
SYSRESET

Event Name Attributes Data Type Range

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A

Name Direction Type Description

context IN ViEvent A handle specifying the unique
occurrence of an event.

eventType IN ViEventType Logical event identifier.

userHandle IN ViAddr A value specified by an application
that can be used for identifying
handlers uniquely in a session for
an event.

vi IN ViSession Unique logical identifier to a session.
186 Chapter 7

VISA Language Reference
viEventHandler
Return Values

See Also See Chapter 4 - Programming with VISA for more information on event
handling and exception handling.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event enabled successfully.
Chapter 7 187

VISA Language Reference
viFindNext
viFindNext

Syntax viFindNext(ViFindList findList, ViPRsrc instrDesc);

Description This function returns the next resource found in the list created by
viFindRsrc. The list is referenced by the handle that was returned by
viFindRsrc.

Parameters

Return Values

See Also viFindRsrc

Name Direction Type Description

findList IN ViFindList Describes a find list. This parameter must
be created by viFindRsrc.

instrDesc OUT ViPRsrc Returns a string identifying location of a
device. Strings can be passed to viOpen
to establish a session to the device.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource(s) found.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER Given findList does not support this function.

VI_ERROR_RSRC_NFOUND There are no more matches.
188 Chapter 7

VISA Language Reference
viFindRsrc
viFindRsrc

Syntax viFindRsrc(ViSession sesn, ViString expr, ViFindList
findList, ViUInt32 retcnt, ViRsrc instrDesc);

Description This function queries a VISA system to locate the resources associated with
a specified interface. This function matches the value specified in the expr
parameter with the resources available for a particular interface.

On successful completion, it returns the first resource found in the list and
returns a count to indicate if there were more resources found that match
the value specified in the expr parameter.

This function also returns a handle to a find list. This handle points to the list
of resources, and it must be used as an input to viFindNext. When this
handle is no longer needed, it should be passed to viClose.

The search criteria specified in the expr parameter has two parts: a regular
expression over a resource string and an optional logical expression over
attribute values. The regular expression is matched against the resource
strings of resources known to the VISA Resource Manager.

If the resource string matches the regular expression, the attribute values of
the resource are then matched against the expression over attribute values.
If the match is successful, the resource has met the search criteria and gets
added to the list of resources found. (Agilent VISA does not support
matching of attribute values.)

The optional attribute expression allows construction of expressions with the
use of logical ANDs, ORs and NOTs. Equal (==) and unequal (!=)
comparators can be used compare attributes of any type. In addition, other
inequality comparators (>, <, >=, <=) can be used to compare attributes of
numeric type. Only global attributes can be used in the attribute expression.

The syntax of expr is defined as follows. The grouping operator () in a
logical expression has the highest precedence, The not operator ! in a
logical expression has the next highest precedence after the grouping
operator, and the or operator || in a logical expression has the lowest
precedence. (Agilent VISA does not support the use of logical expressions
over all attribute values.)
Chapter 7 189

VISA Language Reference
viFindRsrc
expr :=
regularExpr ['{' attrExpr '}']

attrExpr :=
attrTerm |
attrExpr '||' attrTerm

attrTerm :=
attrFactor |
attrTerm '&&' attrFactor

attrFactor :=
'(' attrExpr ')' |
'!' attrFactor |
relationExpr

 relationExpr :=
attributeId compareOp numValue |
attributeId equalityOp stringValue

compareOp :=
'==' | '!=' | '>' | '<' | '>=' | '<='

equalityOp :=
'==' | '!='

attributeId :=
character (character|digit|underscore)*

numValue :=
digit+ |
'-' digit+ |
'0x' hex_digit+ |
'0X' hex_digit+

stringValue :=
'"' character* '"'

Special Character Meaning

&& Logical AND

|| Logical OR

! Logical negation (NOT)

() Parentheses
190 Chapter 7

VISA Language Reference
viFindRsrc
Some examples are:

Local attributes are not allowed in the logical expression part of the expr
parameter to the viFindRsrc operation. viFindRsrc uses a case-
insensitive compare function when matching resource names against the
regular expression specified in expr.

If the value VI_NULL is specified in the findList parameter of viFindRsrc
and the return value is successful, VISA automatically invokes viClose on
the find list handle rather than returning it to the application.

The findList and retCnt parameters to the viFindRsrc operation are
optional. They can be used if only the first match is important and the
number of matches is not needed. Calling viFindRsrc with
"VXI?*INSTR" will return the same resources as invoking it with
"vxi?*instr".

All resource strings returned by viFindRsrc must be recognized by
viParseRsrc and viOpen. However, not all resource strings that
can be parsed or opened have to be findable.

Expr Meaning

GPIB[0-9]*::?*::?*::INSTR
{VI_ATTR_GPIB_SECONDARY_ADDR > 0}

Find all GPIB devices that have secondary
addresses greater than 0.

ASRL?*INSTR{VI_ATTR_ASRL_BAUD == 9600} Find all serial ports configured at 9600 baud.

?*VXI?*INSTR{VI_ATTR_MANF_ID == 0xFF6 &&
!(VI_ATTR_VXI_LA == 0 || VI_ATTR_SLOT <= 0)}

Find all VXI instrument resources whose
manufacturer ID is FF6 and who are not logical
address 0, slot 0, or external controllers.
Chapter 7 191

VISA Language Reference
viFindRsrc
Parameters

Description String for expr Parameter

Special Value for findList Parameter

Name Direction Type Description

expr IN ViString This expression sets the criteria to
search an interface or all interfaces for
existing devices. (See the following
table for description string format.)

findList OUT ViFindList Returns a handle identifying this
search session. This handle will be
used as an input in viFindNext.

instrDesc OUT ViRsrc Returns a string identifying the
location of a device. Strings can then
be passed to viOpen to establish a
session to the given device.

retcnt OUT ViUInt32 Number of matches.

sesn IN ViSession Resource Manager session (should
always be the Default Resource
Manager for VISA returned from
viOpenDefaultRM).

Interface Expression

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

ASRL ASRL[0-9]*::?*INSTR

All ?*INSTR

Value Action Description

VI_NULL Do not return a find list handle.
192 Chapter 7

VISA Language Reference
viFindRsrc
Special Value for retcnt Parameter

Return Values

See Also viFindNext, viClose

Value Action Description

VI_NULL Do not return the number of matches.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource(s) found.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this function.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.
Chapter 7 193

VISA Language Reference
viFlush
viFlush

Syntax viFlush(ViSession vi, ViUInt16 mask);

Description Manually flush the specified buffers associated with formatted I/O operations
and/or serial communication. The values for the mask parameter are:

It is possible to combine any of these read flags and write flags for different
buffers by ORing the flags. However, combining two flags for the same
buffer in the same call to viFlush is illegal. When using formatted I/O
operations with a serial device, a flush of the formatted I/O buffers also
causes the corresponding serial communication buffers to be flushed.
For example, calling viFlush with VI_WRITE_BUF also flushes the
VI_IO_OUT_BUF.

Flag Interpretation

VI_IO_IN_BUF Discard receive buffer contents (same as
VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD Discard eceive buffer contents (does not perform
an I/O to the device).

VI_IO_OUT_BUF Flush the transmit buffer by writing all buffered
data to the device.

VI_IO_OUT_BUF_DISCARD Discard transmit buffer contents (does not perform
any I/O to the device).

VI_READ_BUF Discard the read buffer contents and, if data was
present in the read buffer and no END-indicator was
present, read from the device until encountering an
END indicator (which causes the loss of data).
This action resynchronizes the next viScanf call
to read a <TERMINATED RESPONSE MESSAGE>.
(See the IEEE 488.2 standard.)

VI_READ_BUF_DISCARD Discard read buffer contents (does not perform any
I/O to the device).

VI_WRITE_BUF Flush the write buffer by writing all buffered data
to the device.

VI_WRITE_BUF_DISCARD Discard write buffer contents (does not perform any
I/O to the device).
194 Chapter 7

VISA Language Reference
viFlush
For backward compatibility, VI_IO_IN_BUF is the same as
VI_ASRL_IN_BUF, VI_IO_IN_BUF_DISCARD is the same as
VI_ASRL_IN_BUF_DISCARD, VI_IO_OUT_BUF is the same as
VI_ASRL_OUT_BUF, and VI_IO_OUT_BUF_DISCARD is the same as
VI_ASRL_OUT_BUF_DISCARD.

Parameters

Return Values

See Also viSetBuf

Name Direction Type Description

mask IN ViUInt16 Specifies the action to be taken with flushing
the buffer. (See the following table.)

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Buffers flushed successfully.

Error Codes Description

VI_ERROR_INV_MASK The specified mask does not specify a valid flush
function on read/write resource.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_IO Could not perform read/write function because
of I/O error.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO The read/write function was aborted because
timeout expired while function was in progress.
Chapter 7 195

VISA Language Reference
viGetAttribute
viGetAttribute

Syntax viGetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViAttrState attrState);

Description This function retrieves the state of an attribute for the specified session.

Parameters

Name Direction Type Description

attribute IN ViAttr Resource attribute for which the state
query is made.

attrState OUT See Note
below.

The state of the queried attribute for a
specified resource. The interpretation of
the returned value is defined by the
individual resource. Note that you must
allocate space for character strings
returned.

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session,
event, or find list.

NOTE

The pointer passed to viGetAttribute must point to the exact type
required for that attribute, ViUInt16, ViInt32, etc. For example, when
reading an attribute state that returns a ViChar, you must pass a pointer
to a ViChar variable. You must allocate space for the returned data.
196 Chapter 7

VISA Language Reference
viGetAttribute
Return Values

See Also viSetAttribute

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource attribute retrieved successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the
referenced resource.
Chapter 7 197

VISA Language Reference
viGpibCommand
viGpibCommand

Syntax viGpibCommand(ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Description Write GPIB command bytes on the bus. This operation attempts to write
count number of bytes of GPIB commands to the interface bus specified by
vi. This operation is valid only on GPIB INTFC (interface) sessions. This
operation returns only when the transfer terminates.

If you pass VI_NULL as the retCount parameter to the viGpibCommand
operation, the number of bytes transferred will not be returned. This may be
useful if it is important to know only whether the operation succeeded or
failed.

Parameters

Special Value for retCount Parameter

Return Values

Name Direction Type Description

buf IN ViBuf Buffer containing valid GPIB commands.

count IN ViUInt32 Number of bytes to be written.

retCount IN ViUInt32 Number of bytes actually transferred.

vi IN ViSession Unique logical identifier to a session.

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource attribute retrieved successfully.
198 Chapter 7

VISA Language Reference
viGpibCommand
See Also INTFC Resource Description

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_SETUP Unable to start write operation because setup
is invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during
transfer.

VI_ERROR_NCIC The interface associated with this session
is not currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
Chapter 7 199

VISA Language Reference
viGpibControlATN
viGpibControlATN

Syntax viGpibControlATN(ViSession vi, ViUInt16 mode);

Description Controls the state of the GPIB ATN interface line, and optionally the active
controller state of the local interface board. This operation asserts or
deasserts the GPIB ATN interface line according to the specified mode.
The mode can also specify whether the local interface board should acquire
or release Controller Active status. This operation is valid only on GPIB
INTFC (interface) sessions.

Parameters

Special Values for mode Parameter

NOTE

It is generally not necessary to use the viGpibControlATN operation in
most applications. Other operations such as viGpibCommand and
viGpibPassControl modify the ATN and/or CIC state automatically.

Name Direction Type Description

mode IN ViUInt16 Specifies the state of the ATN line and,
optionally, the local active controller
state.

vi IN ViSession Unique logical identifier to a session.

mode Action Description

VI_GPIB_ATN_ASSERT Assert ATN line synchronously (in 488
terminology). If a data handshake is in
progress, ATN will not be asserted until the
handshake is complete.

VI_GPIB_ATN_DEASSERT Deassert ATN line.

VI_GPIB_ATN_DEASSERT_
HANDSHAKE*

Deassert ATN line, and enter shadow
handshake mode. The local board will
participate in data handshakes as an
Acceptor without actually reading the data.
200 Chapter 7

VISA Language Reference
viGpibControlATN
Return Values

See Also INTFC Resource Description

VI_GPIB_REN_ASSERT_
IMMEDIATE*

Assert ATN line asynchronously (in 488
terminology). This should generally be
used only under error conditions.

* Not supported in Agilent VISA

mode Action Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_MODE The value specified by the mode parameter
is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NCIC The interface associated with this session
is not currently the controller in charge.

VI_ERROR_NSUP_MODE The specified mode is not supported by this
VISA implementation.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
Chapter 7 201

VISA Language Reference
viGpibControlREN
viGpibControlREN

Syntax viGpibControlREN(ViSession vi, ViUInt16 mode);

Description Controls the state of the GPIB REN interface line and, optionally, the
remote/local state of the device. This operation asserts or deasserts the
GPIB REN interface line according to the specified mode.

The mode can also specify whether the device associated with this session
should be placed in local state (before deasserting REN) or remote state
(after asserting REN). This operation is valid only if the GPIB interface
associated with the session specified by vi is currently the system controller.

An INSTR resource implementation of viGpibControlREN for a
GPIB System supports all documented modes. An INTFC resource
implementation of viGpibControlREN for a GPIB System supports
the modes VI_GPIB_REN_DEASSERT, VI_GPIB_REN_ASSERT, and
VI_GPIB_REN_ASSERT_LLO.

Parameters

Special Values for mode Parameter

Name Direction Type Description

mode IN ViUInt16 Specifies the state of the REN line and,
optionally, the device remote/local state.

vi IN ViSession Unique logical identifier to a session.

mode Action Description

VI_GPIB_REN_ADDRESS_GTL Send the Go To Local command (GTL)
to this device.

VI_GPIB_REN_ASSERT Assert REN line.

VI_GPIB_REN_ASSERT_ADDRESS Assert REN line and address this device.

VI_GPIB_REN_ASSERT_ADDRESS_
LLO

Address this device and send it LLO,
putting it in RWLS.

VI_GPIB_REN_ASSERT_LLO Send LLO to any devices that are
addressed to listen.
202 Chapter 7

VISA Language Reference
viGpibControlREN
Return Values

VI_GPIB_REN_DEASSERT Deassert REN line.

VI_GPIB_REN_DEASSERT_GTL Send the Go To Local command (GTL)
to this device and deassert REN line.

mode Action Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource attribute retrieved successfully.

Error Codes Description

VI_ERROR_INV_MODE The value specified by the mode parameter
is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NCIC The interface associated with this session
is not currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_NSYS_CNTLR The interface associated with this session
is not the system controller.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
Chapter 7 203

VISA Language Reference
viGpibPassControl
viGpibPassControl

Syntax viGpibPassControl(ViSession vi, ViUInt16 primAddr,
ViUInt16 secAddr);

Description Tell the GPIB device at the specified address to become controller in charge
(CIC). This operation passes controller in charge status to the device
indicated by primAddr and secAddr and then deasserts the ATN line.
This operation assumes that the targeted device has controller capability.
This operation is valid only on GPIB INTFC (interface) sessions.

Parameters

Return Values

Name Direction Type Description

primAddr IN ViUInt16 Primary address of the GPIB device to
which you want to pass control.

secAddr IN ViUInt16 Secondary address of the targeted
GPIB device. If the targeted device
does not have a secondary address,
this parameter should contain the value
VI_NO_SEC_ADDR.

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.
204 Chapter 7

VISA Language Reference
viGpibPassControl
See Also INTFC Resource Description

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_IO An unknown I/O error occurred during
transfer.

VI_ERROR_NCIC The interface associated with this session
is not currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
Chapter 7 205

VISA Language Reference
viGpibSendIFC
viGpibSendIFC

Syntax viGpibSendIFC(ViSession vi);

Description Pulse the interface clear line (IFC) for at least 100 �seconds. This operation
asserts the IFC line and becomes controller in charge (CIC). The local
board must be the system controller. This operation is valid only on GPIB
INTFC (interface) sessions.

Parameters

Return Values

See Also INTFC Resource Description

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_NSYS_CNTLR The interface associated with this session
is not the system controller.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
206 Chapter 7

VISA Language Reference
viIn8, viIn16, and viIn32
viIn8, viIn16, and viIn32

Syntax viIn8(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt8 val8);

viIn16(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt16 val16);

viIn32(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt32 val32);

Description This operation, by using the specified address space, reads in 8, 16, or 32
bits of data from the specified offset. This operation does not require
viMapAddress to be called prior to its invocation.

This function reads in an 8-bit, 16-bit, or 32-bit value from the specified
memory space (assigned memory base + offset). This function takes the
8-bit, 16-bit, or 32-bit value from the address space pointed to by space.
The offset must be a valid memory address in the space. This function does
not require viMapAddress to be called prior to its invocation.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameter specifies a relative offset from the start of the instrument�s
address space. If the viSession parameter (vi) refers to a MEMACC
session, the offset parameter is an absolute offset from the start of memory
in that VXI address space. The valid entries for specifying address space
are:

The high-level operations viIn8, viIn16, and viIn32 operate
successfully independently from the low-level operations (viMapAddress,
viPeek8, viPeek16, viPeek32, viPoke8, viPoke16, and
viPoke32). The high-level and low-level operations should operate
independently regardless of the configured state of the hardware that is
used to perform memory accesses.

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.

VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.
Chapter 7 207

VISA Language Reference
viIn8, viIn16, and viIn32
For an INSTR resource, the offset is a relative address of the device
associated with the given INSTR resource. For a MEMACC resource, the
offset parameter specifies an absolute address.

The offset specified in the viIn8, viIn16, and viIn32 operations for an
INSTR resource is the offset address relative to the device's allocated
address base for the corresponding address space specified.

For example, if space specifies VI_A16_SPACE, offset specifies the offset
from the logical address base address of the VXI device specified. If space
specifies VI_A24_SPACE or VI_A32_SPACE, offset specifies the offset
from the base address of the VXI device's memory space allocated by the
VXI Resource Manager within VXI A24 or A32 space.

Parameters

Return Values

Name Direction Type Description

offset IN ViBusAddress Offset (in bytes) of the memory
to read from.

space IN ViUInt16 Specifies the address space.
(See the following table.)

val8, val16,
or val32

 OUT ViUInt8,
ViUInt16, or
ViUInt32

Data read from bus (8-bits for
viIn8, 16-bits for viIn16, and
32-bits for viIn32).

vi IN ViSession Unique logical identifier to a
session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.
208 Chapter 7

VISA Language Reference
viIn8, viIn16, and viIn32
See Also viOut8, viOut16, viOut32, viPeek8, viPeek16, viPeek32, viMoveIn8, viMoveIn16,
viMoveIn32

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this
hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
Chapter 7 209

VISA Language Reference
viInstallHandler
viInstallHandler

Syntax viInstallHandler(ViSession vi, ViEventType eventType,
ViHndlr handler, ViAddr userHandle);

Description This function allows applications to install handlers on sessions for event
callbacks. The handler specified in the handler parameter is installed along
with previously installed handlers for the specified event. Applications can
specify a value in the userHandle parameter that is passed to the handler on
its invocation. VISA identifies handlers uniquely using the handler reference
and the userHandle value.

Parameters

The following events can be enabled:

NOTE

Versions of VISA prior to Version 2.0 allow only a single handler per
event type per session.

Name Direction Type Description

eventType IN ViEventType Logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a
handler to be installed by an
application.

userHandle IN ViAddr A value specified by an application
that can be used for identifying
handlers uniquely for an event type.

vi IN ViSession Unique logical identifier to a session.

Event Name Description

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed.

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.
210 Chapter 7

VISA Language Reference
viInstallHandler
Return Values

See Also viEventHandler

VI_EVENT_TRIG Notification that a hardware trigger was
received from a device.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt
has been received from a device.

Event Name Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handler installed successfully.

Error Codes Description

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be
returned if an application attempts to install
multiple handlers for the same event on the
same session.

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).
Chapter 7 211

VISA Language Reference
viLock
viLock

Syntax viLock(ViSession vi, ViAccessMode lockType, ViUInt32
timeout, ViKeyId requestedKey, ViKeyId accessKey);

Description This function is used to obtain a lock on the specified resource. The caller
can specify the type of lock requested (exclusive or shared lock) and the
length of time the operation will suspend while waiting to acquire the lock
before timing out. This function can also be used for sharing and nesting
locks.

The requestedKey and accessKey parameters apply only to shared locks.
These parameters are not applicable when using the lock type
VI_EXCLUSIVE_LOCK. In this case, requestedKey and accessKey should
be set to VI_NULL. VISA allows user applications to specify a key to be
used for lock sharing through the use of the requestedKey parameter.

Alternatively, a user application can pass VI_NULL for the requestedKey
parameter when obtaining a shared lock, in which case VISA will generate a
unique access key and return it through the accessKey parameter. If a user
application does specify a requestedKey value, VISA will try to use this
value for the accessKey.

As long as the resource is not locked, VISA will use the requestedKey as
the access key and grant the lock. When the operation succeeds, the
requestedKey will be copied into the user buffer referred to by the
accessKey parameter.

The session that gained a shared lock can pass the accessKey to other
sessions for the purpose of sharing the lock. The session wanting to join the
group of sessions sharing the lock can use the key as an input value to the
requestedKey parameter.

VISA will add the session to the list of sessions sharing the lock, as long as
the requestedKey value matches the accessKey value for the particular
resource. The session obtaining a shared lock in this manner will then have
the same access privileges as the original session that obtained the lock.

NOTE

 The viLock function is not supported on network devices.
212 Chapter 7

VISA Language Reference
viLock
It is also possible to obtain nested locks through this function. To acquire
nested locks, invoke the viLock function with the same lock type as the
previous invocation of this function. For each session, viLock and
viUnlock share a lock count, which is initialized to 0. Each invocation of
viLock for the same session (and for the same lockType) increases the
lock count.

A shared lock returns with the same accessKey every time. When a session
locks the resource a multiple number of times, it is necessary to invoke the
viUnlock function an equal number of times in order to unlock the
resource. That is, the lock count increments for each invocation of viLock,
and decrements for each invocation of viUnlock. A resource is actually
unlocked only when the lock count is 0.

NOTE

On HP-UX, SIGALRM is used in implementing the viLock when timeout
is non-zero. The viLock function's use of SIGALRM is exclusive � an
application should not also expect to use SIGALRM at the same time.

NOTE

On HP-UX, some semaphores used in locking are permanently allocated
and diminish the number of semaphores available for applications. If the
operating system runs out of semaphores, the number of semaphores
may be increased by doing the following:

1. Run sam.
2. Double-click Kernel Configuration.
3. Double-click Configurable Parameters.
4. Change semmni and semmns to a higher value, such as 300.
Chapter 7 213

VISA Language Reference
viLock
Parameters

Name Direction Type Description

accessKey OUT ViKeyId This parameter should be set to
VI_NULL when lockType is
VI_EXCLUSIVE_LOCK (exclusive
lock).

When trying to lock the resource as
VI_SHARED_LOCK (shared lock), the
resource returns a unique access key
for the lock if the operation succeeds.
This accessKey can then be passed
to other sessions to share the lock.

lockType IN ViAccessMode Specifies the type of lock requested,
which can be VI_EXCLUSIVE_LOCK
or VI_SHARED_LOCK.

requestedKey IN ViKeyId This parameter is not used and should
be set to VI_NULL when lockType
is VI_EXCLUSIVE_LOCK (exclusive
lock).

When trying to lock the resource as
VI_SHARED_LOCK (shared lock), a
session can either set it to VI_NULL
so that VISA generates an accessKey
for the session, or the session can
suggest an accessKey to use for the
shared lock. See "Description" for
more details.

timeout IN ViUInt32 Absolute time period (in milliseconds)
that a resource waits to get unlocked
by the locking session before
returning this operation with an error.
VI_TMO_IMMEDIATE and
VI_TMO_INFINITE are also valid
values.

vi IN ViSession Unique logical identifier to a session.
214 Chapter 7

VISA Language Reference
viLock
Return Values

See Also viUnlock. For more information on locking, see Chapter 4 - Programming with
VISA.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The specified access mode was successfully
acquired.

VI_SUCCESS_NESTED_
EXCLUSIVE

The specified access mode was successfully
acquired, and this session has nested exclusive
locks.

VI_SUCCESS_NESTED_
SHARED

The specifed access mode was successfully
acquired, and this session has nested shared
locks.

Error Codes Description

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed is not a valid
access key to the specified resource.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by
this resource.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given vi does not identify a valid session or
object.

VI_ERROR_RSRC_LOCKED The specified type of lock cannot be obtained
because the resource is already locked with a
lock type incompatible with the lock requested.

VI_ERROR_TMO The specified type of lock could not be obtained
within the specified timeout period.
Chapter 7 215

VISA Language Reference
viMapAddress
viMapAddress

Syntax viMapAddress(ViSession vi, ViUInt16 mapSpace,
ViBusAddress mapBase, ViBusSize mapSize,
ViBoolean access, ViAddr suggested,ViAddr address);

Description This function maps in a specified memory space. The memory space that is
mapped is dependent on the type of interface specified by the vi parameter
and the mapSpace parameter (see the following table). The address
parameter returns the address in your process space where memory is
mapped. The values for the mapSpace parameter are:

If the viSession parameter (vi) refers to an INSTR session, the mapBase
parameter specifies a relative offset in the instrument�s mapSpace. If the
viSession parameter (vi) refers to a MEMACC session, the mapBase
parameter is an absolute offset from the start of the VXI mapSpace.

The mapBase parameter specified in the viMapAddress operation for an
INSTR resource is the offset address relative to the device's allocated
address base for the corresponding address space specified.

For example, if mapSpace specifies VI_A16_SPACE, mapBase specifies
the offset from the logical address base address of the VXI device specified.
If mapSpace specifies VI_A24_SPACE or VI_A32_SPACE, mapBase
specifies the offset from the base address of the VXI device's memory space
allocated by the VXI Resource Manager within VXI A24 or A32 space.

Value Description

VI_A16_SPACE Map the A16 address space of VXI/MXI bus.

VI_A24_SPACE Map the A24 address space of VXI/MXI bus.

VI_A32_SPACE Map the A32 address space of VXI/MXI bus.

NOTE

For a given session, you can only have one map at one time. If you need
to have multiple maps to a device, you must open one session for each
map needed.
216 Chapter 7

VISA Language Reference
viMapAddress
Parameters

Return Values

Name Direction Type Description

access IN ViBoolean VI_FALSE.

address OUT ViAddr Address in your process space
where the memory was mapped.

mapBase IN ViBusAddress Offset (in bytes) of the memory to
be mapped.

mapSize IN ViBusSize Amount of memory to map (in
bytes).

mapSpace IN ViUInt16 Specifies the address space to
map.

suggested IN ViAddr If suggested parameter is not
VI_NULL, the operating system
attempts to map the memory to the
address specified in suggested.
There is no guarantee, however,
that the memory will be mapped to
that address. This function may
map the memory into an address
region different from suggested.

vi IN ViSession Unique logical identifier to a
session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Map successful.
Chapter 7 217

VISA Language Reference
viMapAddress
See Also viUnmapAddress

Error Codes Description

VI_ERROR_ALLOC Unable to allocate window of at least the
requested size.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because the setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_INV_SIZE Invalid size of window specified.

VI_ERROR_INV_SPACE Invalid mapSpace specified.

VI_ERROR_NSUP_OFFSET Specified region is not accessible from this
hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO viMapAddress could not acquire resource or
perform mapping before the timer expired.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped
window.
218 Chapter 7

VISA Language Reference
viMapTrigger
viMapTrigger

Syntax viMapTrigger(ViSession vi, ViInt16 trigSrc,
ViInt16 trigDest, ViUInt16 mode);

Description Map the specified trigger source line to the specified destination line. This
operation can be used to map one trigger line to another. This operation is
valid only on VXI Backplane (BACKPLANE) sessions.

If this operation is called multiple times on the same BACKPLANE resource
with the same source trigger line and different destination trigger lines, the
result should be that when the source trigger line is asserted all specified
destination trigger lines should also be asserted.

If this operation is called multiple times on the same BACKPLANE resource
with different source trigger lines and the same destination trigger line the
result should be that when any of the specified source trigger lines is
asserted, the destination trigger line should also be asserted. However,
mapping a trigger line (as either source or destination) multiple times
requires special hardware capabilities and is not guaranteed to be
implemented.

Parameters

Name Direction Type Description

mode IN ViUInt16 Specifies the trigger mapping
mode. This should always be
VI_NULL for VISA 2.2.

trigDest IN ViInt16 Destination line to which to map.

trigSrc IN ViInt16 Source line from which to map.

vi IN ViSession Unique logical identifier to a
session.
Chapter 7 219

VISA Language Reference
viMapTrigger
Special Values for trgSrc and trigDest Parameters

Return Values

See Also BACKPLANE Resource Description

Value Action Description

VI_TRIG_ECL0 -
VI_TRIG_ECL1

Map the specified VXI ECL trigger line.

VI_TRIG_PANEL_IN Map controller's front panel trigger input line.

VI_TRIG_PANEL_OUT Map controller's front panel trigger output line.

VI_TRIG_TTL0 -
VI_TRIG_TTL7

Map the specified VXI TTL trigger line.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_TRIG_MAPPED Path from trigSrc to trigDest is already mapped.

Error Codes Description

VI_ERROR_INV_LINE Specified line(s) (trigSrc or trigDest) invalid.

VI_ERROR_INV_MODE Value specified by the mode parameter is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_LINE_IN_USE One of the specified lines (trigSrc or trigDest) is
currently in use.

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is
not supported by this VISA implementation.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
220 Chapter 7

VISA Language Reference
viMemAlloc
viMemAlloc

Syntax viMemAlloc(ViSession vi, ViBusSize size,
ViBusAddress offset);

Description This function returns an offset into a device's memory region that has been
allocated for use by this session. If the device to which the given vi refers is
located on the local interface card, the memory can be allocated either on
the device itself or on the computer's system memory. The offset returned
from the viMemAlloc operation is the offset address relative to the device's
allocated address base for whichever address space into which the given
device exports memory.

Parameters

Return Values

NOTE

This function is not implemented in Agilent VISA.

Name Direction Type Description

offset OUT ViBusAddress Returns the offset of the allocated
device memory.

size IN ViBusSize Specifies the size of the allocation.

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The operation completed successfully.
Chapter 7 221

VISA Language Reference
viMemAlloc
See Also viMemFree

Error Codes Description

VI_ERROR_ALLOC Unable to allocate shared memory block of the
requested size.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SIZE Invalid size specified.

VI_ERROR_MEM_NSHARED The device does not export any memory.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.
222 Chapter 7

VISA Language Reference
viMemFree
viMemFree

Syntax viMemFree(ViSession vi, ViBusAddress offset);

Description This function frees the memory previously allocated using viMemAlloc.

Parameters

Return Values

See Also viMemAlloc

NOTE

This function is not implemented in Agilent VISA.

Name Direction Type Description

offset IN ViBusAddress Specifies the memory previously
allocated with viMemAlloc.

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The operation completed successfully.

Error Codes Description

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_WINDOW_NMAPPED The specified offset is currently in use by
viMapAddress.
Chapter 7 223

VISA Language Reference
viMove
viMove

Syntax viMove (ViSession vi, ViUInt16 srcSpace,
ViBusAddress srcOffset, ViUInt16 srcWidth,
ViUInt16 destSpace, ViBusAddress destOffset,
ViUInt16 destWidth, ViBusSize length);

Description This operation moves data from the specified source to the specified
destination. The source and the destination can either be local memory or
the offset of the interface with which this INSTR or MEMACC resource is
associated. This operation uses the specified data width and address space.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument�s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space.

Valid entries for specifying address space:

Valid entries for specifying widths:

Value Description

VI_A16_SPACE Address A16 memory address space of the VXI/MXI bus.

VI_A24_SPACE Address A24 memory address space of the VXI/MXI bus.

VI_A32_SPACE Address A32 memory address space of the VXI/MXI bus.

VI_LOCAL_SPACE Address the process-local memory (using virtual address).

Value Description

VI_WIDTH_8 Performs an 8-bit (D08) transfer.

VI_WIDTH_16 Performs a 16-bit (D16) transfer.

VI_WIDTH_32 Performs a 32-bit (D32) transfer.
224 Chapter 7

VISA Language Reference
viMove
The high-level operation viMove operates successfully independently from
the low-level operations (viMapAddress, viPeek8, viPeek16,
viPeek32, viPoke8, viPoke16, and viPoke32). The high-level and
low-level operations should operate independently regardless of the
configured state of the hardware that is used to perform memory accesses.

The length specified in the viMove operation is the number of elements
(of the size corresponding to the operation) to transfer, beginning at the
specified offset. Therefore, offset + length*size cannot exceed the amount
of memory exported by the device in the given space.

If srcSpace is not VI_LOCAL_SPACE, srcOffset is a relative address of the
device associated with the given INSTR resource. Similarly, if destspace is
not VI_LOCAL_SPACE, destOffset is a relative address of the device
associated with the given INSTR resource. srcOffset and destOffset
specified in the viMove operation for a MEMACC resource are absolute
addresses.

Parameters

Name Direction Type Description

destOffset IN ViBusAddress Specifies the address space of the
destination

destSpace IN ViUInt16 Specifies the address space of the
destination.

destWidth IN ViUInt16 Specifies the data width of the
destination.

length IN ViBusSize Number of data elements to
transfer, where the data width of the
elements to transfer is identical to
the source data width.

srcOffset IN ViBusAddress Offset of the starting address or
register from which to read.

srcSpace IN ViUInt16 Specifies the address space of the
source.

srcWidth IN ViUInt16 Specifies the data width of the
source.

vi IN ViSession Unique logical identifier to a session.
Chapter 7 225

VISA Language Reference
viMove
Return Values

See Also viMoveAsync. Also, see MEMACC Resource Description.

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus Error occurred during transfer.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_INV_OFFSET Invalid source or destination offset
specified.

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_INV_SPACE Invalid source or destination address
specified.

VI_ERROR_INV_WIDTH Invalid source or destination width
specified.

VI_ERROR_NSUP_ALIGH_OFFSET The specified offset is not properly aligned
for the access width of the operation.

VI_ERROR_NSUP_OFFSET Specified source or destination offset is not
accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this
operation.

VI_ERROR_NSUP_VAR_WIDTH Cannot support source and destination
widths that are different.

VI_ERROR_NSUP_WIDTH Specified width is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
226 Chapter 7

VISA Language Reference
viMoveAsync
viMoveAsync

Syntax viMoveAsync (ViSession vi, ViUInt16 srcSpace,
ViBusAddress srcOffset, ViUInt16 srcWidth,
ViUInt16 destSpace, ViBusAddress destOffset,
ViUInt16 destWidth, ViBusSize length, ViJobId jobId);

Description This operation asynchronously moves data from the specified source to the
specified destination. This operation queues up the transfer in the system,
then it returns immediately without waiting for the transfer to complete.
When the transfer terminates, a VI_EVENT_IO_COMPLETE event indicates
the status of the transfer.

The operation returns jobId which you can use either with viTerminate to
abort the operation or with VI_EVENT_IO_COMPLETION events to identify
which asynchronous move operations completed. The source and
destination can be either local memory or the offset of the device/interface
with which this INSTR or MEMACC Resource is associated. This operation
uses the specified data width and address space.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument�s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space. Valid entries for specifying address space:

NOTE

This function is implemented synchronously in Agilent VISA.

Value Description

VI_A16_SPACE Address A16 memory address space of the VXI/MXI bus.

VI_A24_SPACE Address A24 memory address space of the VXI/MXI bus.

VI_A32_SPACE Address A32 memory address space of the VXI/MXI bus.

VI_LOCAL_SPACE Addresses the process-local memory (using virtual
address).
Chapter 7 227

VISA Language Reference
viMoveAsync
Valid entries for specifying widths:

Since an asynchronous I/O request could complete before the
viMoveAsync operation returns, and the I/O completion event can be
distinguished based on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event
could possibly occur. Setting the output parameter jobId before the data
transfer even begins ensures that an application can always match the jobId
parameter with the VI_ATTR_JOB_ID attribute of the I/O completion event.

If you pass VI_NULL as the jobId parameter to the viMoveAsync
operation, no jobId will be returned. This option may be useful if only one
asynchronous operation will be pending at a given time. If multiple jobs are
queued at the same time on the same session, an application can use the
jobId to distinguish the jobs, as they are unique within a session. The value
VI_NULL is a reserved jobId and has a special meaning in viTerminate.

The status code VI_ERROR_RSRC_LOCKED can be returned either
immediately or from the VI_EVENT_IO_COMPLETION event.

If srcSpace is not VI_LOCAL_SPACE, srcOffset is a relative address of the
device associated with the given INSTR resource. Similarly, if destspace is
not VI_LOCAL_SPACE, destOffset is a relative address of the device
associated with the given INSTR resource.

Parameters

Value Description

VI_WIDTH_8 Performs an 8-bit (D08) transfer.

VI_WIDTH_16 Performs a 16-bit (D16) transfer.

VI_WIDTH_32 Performs a 32-bit (D32) transfer.

Name Direction Type Description

destOffset IN ViBusAddress Offset of the starting address or
register to write to.

destSpace IN ViUInt16 Specifies the address space of the
destination.

destWidth IN ViUInt16 Specifies the data width of the
destination.
228 Chapter 7

VISA Language Reference
viMoveAsync
Special value for jobId Parameter

Return Values

jobId OUT ViJobId Represents the location of an
integer that will be set to the job
identifier of this asynchronous
move operation. Each time an
asynchronous move operation is
called, it is assigned a unique job
identifier.

length IN ViBusSize Number of data elements to
transfer, where the data width of
the elements to transfer is identical
to the source data width.

srcOffset IN ViBusAddress Offset of the starting address or
register from which to read.

srcSpace IN ViUInt16 Specifies the address space of the
source.

srcWidth IN ViUInt16 Specifies the data width of the
source.

vi IN ViSession Unique logical identifier to a
session.

Name Direction Type Description

Value Description

VI_NULL Operation does not return a job identifier.

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous operation completed successfully.

VI_SUCCESS_SYNC Operation Perfomed synchronously.
Chapter 7 229

VISA Language Reference
viMoveAsync
See Also viMove. Also, see the INSTR and MEMACC Resource descriptions.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_QUEUE Unable to queue move operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
230 Chapter 7

VISA Language Reference
viMoveIn8, viMoveIn16, and viMoveIn32
viMoveIn8, viMoveIn16, and viMoveIn32

Syntax viMoveIn8(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViBusSize length, ViAUInt8 buf8);

viMoveIn16(ViSession vi, ViUInt16 space,
ViBusAddress offset, ViBusSize length, ViAUInt16 buf16);

viMoveIn32(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViBusSize length, ViAUInt32 buf32);

Description This function moves an 8-bit, 16-bit, or 32-bit block of data from the specified
memory space (assigned memory base + offset) to local memory. This
function reads the 8-bit, 16-bit, or 32-bit value from the address space
pointed to by space. The offset must be a valid memory address in the
space. These functions do not require viMapAddress to be called prior to
their invocation.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument�s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space. The valid entries for specifying address space
are:

The viMoveIn functions do a block move of memory from a VXI device
if VI_ATTR_SRC_INCREMENT is 1. However, they do a FIFO read of a VXI
memory location if VI_ATTR_SRC_INCREMENT is 0 (zero).

The high-level operations viIn8, viIn16, and viIn32 operate
successfully independently from the low-level operations (viMapAddress,
viPeek8, viPeek16, viPeek32, viPoke8, viPoke16, and
viPoke32).

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.

VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.
Chapter 7 231

VISA Language Reference
viMoveIn8, viMoveIn16, and viMoveIn32
The high-level and low-level operations should operate independently
regardless of the configured state of the hardware that is used to perform
memory accesses.

For an INSTR resource, the offset is a relative address of the device
associated with the given INSTR resource. For a MEMACC resource, the
offset parameter specifies an absolute address.

The offset specified in the viMoveIn8, viMoveIn16, and viMoveIn32
operations for an INSTR resource is the offset address relative to the
device's allocated address base for the corresponding address space
specified.

For example, if space specifies VI_A16_SPACE, offset specifies the offset
from the logical address base address of the VXI device specified. If space
specifies VI_A24_SPACE or VI_A32_SPACE, offset specifies the offset
from the base address of the VXI device's memory space allocated by the
VXI Resource Manager within VXI A24 or A32 space.

The length specified in the viMoveInXX operations is the number of
elements (of the size corresponding to the operation) to transfer, beginning
at the specified offset. Therefore, offset + length*size cannot exceed the
amount of memory exported by the device in the given space.

The length specified in the viMoveInXX operations is the number of
elements (of the size corresponding to the operation) to transfer, beginning
at the specified offset. Therefore, offset + length*size cannot exceed the
total amount of memory available in the given space.

Parameters

Name Direction Type Description

buf8,
buf16,
or
buf32

 OUT ViAUInt8,
ViAUInt16, or
ViAUInt32

Data read from bus (8-bits for
viMoveIn8, 16-bits for
viMoveIn16, and 32-bits for
viMoveIn32).

length IN ViBusSize Number of elements to transfer,
where the data width of the elements
to transfer is 8-bits for viMoveIn8,
16-bits for viMoveIn16, or 32-bits
for viMoveIn32.

offset IN ViBusAddress Offset (in bytes) of the starting
address or register to read from.
232 Chapter 7

VISA Language Reference
viMoveIn8, viMoveIn16, and viMoveIn32
Return Values

See Also viMoveOut8, viMoveOut16, viMoveOut32, viIn8, viIn16, viIn32

space IN ViUInt16 Specifies the address space. (See
the following table.)

vi IN ViSession Unique logical identifier to a session.

Name Direction Type Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.
Chapter 7 233

VISA Language Reference
viMoveOut8, viMoveOut16, and viMoveOut32
viMoveOut8, viMoveOut16, and
viMoveOut32

Syntax viMoveOut8(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViBusSize length, ViAUInt8 buf8);

viMoveOut16(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViBusSize length, ViAUInt16 buf16);

viMoveOut32(ViSession vi, ViUInt16 space, ViBusAddress
offset, ViBusSize length, ViAUInt32 buf32);

Description This function moves an 8-bit, 16-bit, or 32-bit block of data from local
memory to the specified memory space (assigned memory base + offset).
This function writes the 8-bit, 16-bit, or 32-bit value to the address space
pointed to by space. The offset must be a valid memory address in the
space. This function does not require viMapAddress to be called prior to
its invocation

If the viSession parameter (vi) refers to an INSTR session, the offset
parameters specify relative offsets from the start of the instrument�s address
space. If the viSession parameter (vi) refers to a MEMACC session, the
offset parameters are absolute offsets from the start of memory in the
specified VXI address space. The valid entries for specifying address space
are:

The viMoveOut functions do a block move of memory from a VXI device if
VI_ATTR_DEST_INCREMENT is 1. However, they do a FIFO read of a VXI
memory location if VI_ATTR_DEST_INCREMENT is 0 (zero).

The offset specified in the viMoveOut8, viMoveOut16, and
viMoveOut32 operations for an INSTR resource is the offset address
relative to the device's allocated address base for the corresponding
address space specified.

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.

VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.
234 Chapter 7

VISA Language Reference
viMoveOut8, viMoveOut16, and viMoveOut32
For example, if space specifies VI_A16_SPACE, offset specifies the offset
from the logical address base address of the VXI device specified. If space
specifies VI_A24_SPACE or VI_A32_SPACE, offset specifies the offset
from the base address of the VXI device's memory space allocated by the
VXI Resource Manager within VXI A24 or A32 space.

The length specified in the viMoveOutXX operations is the number of
elements (of the size corresponding to the operation) to transfer, beginning
at the specified offset. Therefore, offset + length*size cannot exceed the
amount of memory exported by the device in the given space.

The length specified in the viMoveOutXX operations is the number of
elements (of the size corresponding to the operation) to transfer, beginning
at the specified offset. Therefore, offset + length*size cannot exceed the
total amount of memory available in the given space.

Parameters

Name Direction Type Description

buf8,
buf16,
or
buf32

IN ViAUInt8,
ViAUInt16, or
ViAUInt32

Data written to bus (8-bits for
viMoveOut8, 16-bits for
viMoveOut16, and 32-bits for
viMoveOut32).

length IN ViBusSize Number of elements to transfer,
where the data width of the elements
to transfer is 8-bits for viMoveOut8,
16-bits for viMoveOut16, or 32-bits
for viMoveOut32.

offset IN ViBusAddress Offset (in bytes) of the starting
address or register to write to.

space IN ViUInt16 Specifies the address space. (See the
following table.)

vi IN ViSession Unique logical identifier to a session.
Chapter 7 235

VISA Language Reference
viMoveOut8, viMoveOut16, and viMoveOut32
Return Values

See Also viMoveIn8, viMoveIn16, viMoveIn32, viOut8, viOut16, viOut32

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.
236 Chapter 7

VISA Language Reference
viOpen
viOpen

Syntax viOpen(ViSession sesn, ViRsrc rsrcName, ViAccessMode
accessMode, ViUInt32 timeout, ViSession vi);

Description This function opens a session to the specified device. It returns a session
identifier that can be used to call any other functions to that device.

Parameters

Name Direction Type Description

accessMode IN ViAccessMode Specifies the modes by which the
resource is to be accessed. The
value VI_EXCLUSIVE_LOCK is used
to acquire an exclusive lock
immediately upon opening a
session.

If a lock cannot be acquired, the
session is closed and an error is
returned. The VI_LOAD_CONFIG
value is used to configure attributes
specified by some external
configuration utility. If this value is
not used, the session uses the
default values provided by this
specification.

Multiple access modes can be used
simultaneously by specifying a "bit-
wise OR" of the values. (Must use
VI_NULL in VISA 1.0.)

rsrcName IN ViRsrc Unique symbolic name of a
resource. (See the following tables.)

sesn IN ViSession Resource Manager session (should
always be the Default Resource
Manager for VISA returned from
viOpenDefaultRM).
Chapter 7 237

VISA Language Reference
viOpen
Address String Grammar for rsrcName Parameter

Examples of Address Strings for rsrcName Parameter

timeout IN ViUInt32 If the accessMode parameter
requires a lock, this parameter
specifies the absolute time period (in
milliseconds) that the resource waits
to get unlocked before this operation
returns an error. Otherwise, this
parameter is ignored. (Must use
VI_NULL in VISA 1.0.)

vi OUT ViSession Unique logical identifier reference to
a session.

Name Direction Type Description

Interface Syntax
VXI VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board][::VXI logical address]::BACKPLANE

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board][::VXI logical address]::BACKPLANE

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB GPIB[board]::INTFC

ASRL ASRL[board][::INSTR]

TCPIP TCPIP[board]::host address[::LAN device name]::INSTR

TCPIP TCPIP[board]::host address::port::SOCKET

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface
VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI
controlled VXI system.
238 Chapter 7

VISA Language Reference
viOpen
Return Values

GPIB::1::0::INSTR A GPIB device at primary address 1 and
secondary address 0 in GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface
number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default
VXI system, which is interface 0.

TCPIP0::1.2.3.4::999::
SOCKET

Raw TCPIP access to port 999 at the specified
address.

TCPIP::devicename@
company.com::INSTR

TCPIP device using VXI-11 located at the specified
address. This uses the default LAN Device Name
of inst0.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Session opened successfully.

VI_SUCCESS_DEV_NPRESENT Session Opened Successfully, but the device at
the specified address is not responding.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist
or could not be loaded using VISA-specified
defaults.
Chapter 7 239

VISA Language Reference
viOpen
See Also viClose

Error Codes Description

VI_ERROR_ALLOC Insufficient system resources to open a
session.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified
interface number is not configured.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing
error.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be
located or loaded.

VI_ERROR_NSUP_OPER The given sesn does not support this
function. For VISA, this function is supported
only by the Default Resource Manager
session.

VI_ERROR_RSRC_BUSY The resource is valid but VISA cannot
currently access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained
because the resource is already locked with
a lock type incompatible with the lock
requested.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource
not present in the system.

VI_ERROR_TMO A session to the resource could not be
obtained within the specified timeout period.
240 Chapter 7

VISA Language Reference
viOpenDefaultRM
viOpenDefaultRM

Syntax viOpenDefaultRM(ViSession sesn);

Description This function returns a session to the Default Resource Manager resource.
This function must be called before any VISA functions can be invoked. The
first call to this function initializes the VISA system, including the Default
Resource Manager resource, and also returns a session to that resource.
Subsequent calls to this function return unique sessions to the same Default
Resource Manager resource.

Parameters

 Return Values

NOTE

All devices to be used must be connected and operational prior to the first
VISA function call (viOpenDefaultRM). The system is configured only
on the first viOpenDefaultRM per process.

If viOpenDefaultRM is first called without devices connected and then
called again when devices are connected, the devices will not be
recognized. You must close ALL Resource Manager sessions and
reopen with all devices connected and operational.

Name Direction Type Description

sesn OUT ViSession Unique logical identifier to a Default Resource
Manager session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Session to the Default Resource Manager resource
created successfully.
Chapter 7 241

VISA Language Reference
viOpenDefaultRM
See Also viOpen, viFindRsrc, viClose

Error Codes Description

VI_ERROR_ALLOC Insufficient system resources to create a session
to the Default Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is
corrupt or does not exist.

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.
242 Chapter 7

VISA Language Reference
viOut8, viOut16, and viOut32
viOut8, viOut16, and viOut32

Syntax viOut8(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt8 val8);

viOut16(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt16 val16);

viOut32(ViSession vi, ViUInt16 space, ViBusAddress offset,
ViUInt32 val32);

Description This function writes an 8-bit, 16-bit, or 32-bit word to the specified memory
space (assigned memory base + offset). This function takes the 8-bit, 16-bit,
or 32-bit value and stores its contents to the address space pointed to by
space. The offset must be a valid memory address in the space. This
function does not require viMapAddress to be called prior to its invocation.

If the viSession parameter (vi) refers to an INSTR session, the offset
parameter specifies a relative offset from the start of the instrument�s
address space. If the viSession parameter (vi) refers to a MEMACC
session, the offset parameter is an absolute offset from the start of memory
in that VXI address space. The valid entries for specifying address space
are:

The high-level operations viOut8, viOur16, and viOut32 operate
successfully independently from the low-level operations (viMapAddress,
viPeek8, viPeek16, viPeek32, viPoke8, viPoke16, and
viPoke32). The high-level and low-level operations should operate
independently regardless of the configured state of the hardware that is
used to perform memory accesses.

For an INSTR resource, the offset is a relative address of the device
associated with the given INSTR resource. For a MEMACC resource, the
offset parameter specifies an absolute address.

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.

VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.
Chapter 7 243

VISA Language Reference
viOut8, viOut16, and viOut32
The offset specified in the viOut8, viOut16, and viOut32 operations for
an INSTR resource is the offset address relative to the device's allocated
address base for the corresponding address space specified.

For example, if space specifies VI_A16_SPACE, offset specifies the offset
from the logical address base address of the VXI device specified. If space
specifies VI_A24_SPACE or VI_A32_SPACE, offset specifies the offset
from the base address of the VXI device's memory space allocated by the
VXI Resource Manager within VXI A24 or A32 space.

Parameters

Return Values

Name Direction Type Description

offset IN ViBusAddress Offset (in bytes) of the address or
register to write to.

space IN ViUInt16 Specifies the address space. (See the
following table.)

val8,
val16,
or val32

 IN ViUInt8,
ViUInt16, or
ViUInt32

Data to write to bus (8-bits for viOut8,
16-bits for viOut16, and 32-bits for
viOut32).

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).
244 Chapter 7

VISA Language Reference
viOut8, viOut16, and viOut32
See Also viIn8, viIn16, viIn32, viPoke8, viPoke16, viPoke32, viMoveOut8, viMoveOut16,
viMoveOut32

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_NSUP_ALIGN_
OFFSET

The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset not accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

Error Codes Description
Chapter 7 245

VISA Language Reference
viParseRsrc
viParseRsrc

Syntax viParseRsrc(ViSession sesn, ViRsrc rsrcName,
VIUInt16 intfType, VIUInt16 intfNum);

Description Parse a resource string to get the interface information. This operation
parses a resource string to verify its validity. It should succeed for all strings
returned by viFindRsrc and recognized by viOpen. This operation is
useful if you want to know what interface a given resource descriptor would
use without actually opening a session to it.

The values returned in intfType and intfNum correspond to the attributes
VI_ATTR_INTF_TYPE and VI_ATTR_INTF_NUM. These values would be
the same if a user opened that resource with viOpen and queried the
attributes with viGetAttribute.

If a VISA implementation recognizes aliases in viOpen, it also recognizes
those same aliases in viParseRsrc. Calling viParseRsrc with
"VXI::1::INSTR" will produce the same results as invoking it with
"vxi::1::instr".

Parameters

NOTE

A VISA implementation should not perform any I/O to the specified
resource during this operation. The recommended implementation of
viParseRsrc will return information determined solely from the
resource string and any static configuration information (e.g., .INI files
or the Registry).

Name Direction Type Description

intfNum OUT VIUInt16 Board number of the interface of the
given resource string.

intfType OUT VIUInt16 Interface type of the given resource
string.

rsrcName IN ViRsrc Unique symbolic name of a resource.
246 Chapter 7

VISA Language Reference
viParseRsrc
Return Values

See Also viFindRsrc, viOpen

sesn IN ViSession Resource Manager session (should
always be the Default Resource
Manager for VISA returned from
viOpenDefaultRM).

Name Direction Type Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource string is valid.

Error Codes Description

VI_ERROR_ALLOC Insufficient system resources to parse the
string.

VI_ERROR_INTF_NUM_
NCONFIG

The interface type is valid but the specified
interface number is not configured.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing
error.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be
located or loaded.

VI_ERROR_NSUP_OPER The given sesn does not support this operation.
For VISA, this operation is supported only by the
Default Resource Manager session.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource
not present in the system.
Chapter 7 247

VISA Language Reference
viPeek8, viPeek16, and viPeek32
viPeek8, viPeek16, and viPeek32

Syntax viPeek8(ViSession vi, ViAddr addr, ViUInt8 val8);

viPeek16(ViSession vi, ViAddr addr, ViUInt16 val16);

viPeek32(ViSession vi, ViAddr addr, ViUInt32 val32);

Description This function reads an 8-bit, 16-bit, or 32-bit value from the address location
specified in addr. The address must be a valid memory address in the
current process mapped by a previous viMapAddress call.

Parameters

Return Values None.

See Also viPoke8, viPoke16, viPoke32, viMapAddress, viIn8, viIn16, viIn32

Name Direction Type Description

addr IN ViAddr Specifies the source address to read the
value.

val8,
val16, or
val32

 OUT ViUInt8,
ViUInt16,
or
ViUInt32

Data read from bus (8-bits for viPeek8,
16-bits for viPeek16, and 32-bits for
viPeek32).

vi IN ViSession Unique logical identifier to a session.

NOTE

ViAddr is defined as a void *. To do pointer arithmetic, you must cast
this to an appropriate type (ViUInt8, ViUInt16, or ViUInt32). Then,
be sure the offset is correct for the type of pointer you are using. For
example, (ViUInt8 *)addr + 4 points to the same location as
(ViUInt16 *)addr + 2.
248 Chapter 7

VISA Language Reference
viPoke8, viPoke16, and viPoke32
viPoke8, viPoke16, and viPoke32

Syntax viPoke8(ViSession vi, ViAddr addr, ViUInt8 val8);

viPoke16(ViSession vi, ViAddr addr, ViUInt16 val16);

viPoke32(ViSession vi, ViAddr addr, ViUInt32 val32);

Description This function takes an 8-bit, 16-bit, or 32-bit value and stores its content to
the address pointed to by addr. The address must be a valid memory
address in the current process mapped by a previous viMapAddress call.

Parameters

Return Values None.

See Also viPeek8, viPeek16, viPeek32, viMapAddress, viOut8, viOut16, viOut32

Name Direction Type Description

addr IN ViAddr Specifies the destination address to
store the value.

val8,
val16 or
val32

IN ViUInt8,
ViUInt16,
or
ViUInt32

Data written to bus (8-bits for viPoke8,
16-bits for viPoke16, and 32-bits for
viPoke32).

vi IN ViSession Unique logical identifier to a session.

NOTE

ViAddr is defined as a void *. To do pointer arithmetic, you must cast
this to an appropriate type (ViUInt8, ViUInt16, or ViUInt32). Then,
be sure the offset is correct for the type of pointer you are using. For
example, (ViUInt8 *)addr + 4 points to the same location as
(ViUInt16 *)addr + 2.
Chapter 7 249

VISA Language Reference
viPrintf
viPrintf

Syntax viPrintf(ViSession vi, ViString writeFmt, arg1, arg2,...);

Description This function converts, formats, and sends the parameters arg1, arg2, ... to
the device as specified by the format string. Before sending the data, the
function formats the arg characters in the parameter list as specified in the
writeFmt string. You should not use the viWrite and viPrintf functions
in the same session.

VISA functions that take a variable number of parameters (e.g., viPrintf,
viScanf, and viQueryf) are not callable from Visual Basic. Use the
corresponding viVPrintf, viVScanf, and viVQueryf functions instead.

The writeFmt string can include regular character sequences, special
formatting characters, and special format specifiers. The regular characters
(including white spaces) are written to the device unchanged. The special
characters consist of \ (backslash) followed by a character. The format
specifier sequence consists of % (percent) followed by an optional modifier
(flag), followed by a format code.

Up to four arg parameters may be required to satisfy a % format conversion
request. In the case where multiple args are required, they appear in the
following order:

- field width (* with %d, %f, or %s) if used
- precision (* with %d, %f, or %s) if used
- array_size (* with %b, %B, %y, %d, or %f) if used
- value to convert

This assumes that a * is provided for both the field width and the precision
modifiers in a %s, %d, or %f. The third arg parameter is used to satisfy a
",*" comma operator. The fourth arg parameter is the value to be converted
itself.

For ANSI C compatibility the following conversion codes are also supported
for output codes. These codes are 'i,' 'o,' 'u,' 'n,' 'x,' 'X,' 'e,' 'E,' 'g,' 'G,' and 'p.'
For further explanation of these conversion codes, see the ANSI C
Standard.
250 Chapter 7

VISA Language Reference
viPrintf
Special Formatting Characters

Special formatting character sequences send special characters. The
following table lists the special characters and describes what they send to
the device.

Format Specifiers

The format specifiers convert the next parameter in the sequence according
to the modifier and format code, after which the formatted data is written to
the specified device. The format specifier has the following syntax:

%[modifiers]format code

where format code specifies which data type in which the argument is
represented. The modifiers are optional codes that describe the target data.
In the following tables, a d format code refers to all conversion codes of type
integer (d, i, o, u, x, X), unless specified as %d only. Similarly, an
f format code refers to all conversion codes of type float (f, e, E, g, G),
unless specified as %f only.

Every conversion command starts with the % character and ends with a
conversion character (format code). Between the % character and the format
code, the modifiers in the following tables can appear in the sequence.

\n Sends the ASCII LF character. The END identifier will also be
automatically sent.

\r Sends an ASCII CR character.

\t Sends an ASCII TAB character.

\### Sends the ASCII character specified by the octal value.

\" Sends the ASCII double-quote (") character.

\\ Sends a backslash (\) character.
Chapter 7 251

VISA Language Reference
viPrintf
ANSI C Standard Modifiers

Modifier Supported with
Format Code

Description

An integer
specifying
field width.

d, f, s
format codes

This specifies the minimum field width of the converted argument.
If an argument is shorter than the field width, it will be padded on the
left (or on the right if the - flag is present). An asterisk (*) may be
present in lieu of a field width modifier, in which case an extra arg is
used. This arg must be an integer representing the field width.

Special case: For the @H, @Q, and @B flags, the field width includes
the #H, #!, and #B strings, respectively.

An integer
specifying
precision.

d, f, s format
codes

The precision string consists of a string of decimal digits. A .
(decimal point) must prefix the precision string. An asterisk (*)
may be present in lieu of a precision modifier, in which case an
extra arg is used. This arg must be an integer representing the
precision of a numeric field. The precision string specifies the
following:
� The minimum number of digits to appear for the @1,

@H, @Q, and @B flags and the i, o, u, x, and X
format codes.

� The maximum number of digits after the decimal point
in case of f format codes.

� Maximum numbers of characters for the string (s)
specifier.

� Maximum significant digits for g format code.

An argument
length
modifier.

h, l, L,
z, and Z are
legal values.
(z and Z are
not ANSI C
standard
flags.)

h (d, b, B
format codes)

l (d, f, b, B
format codes)

L (f format
codes)

z, Z (b, B
format codes)

The argument length modifiers specify one of the following:
� The h modifier promotes the argument to a short or

unsigned short, depending on the format code type.
� The l modifier promotes the argument to a long or

unsigned long.
� The L modifier promotes the argument to a long double

parameter.
� The z modifier promotes the argument to an array of

floats.
� The Z modifier promotes the argument to an array of

doubles.
252 Chapter 7

VISA Language Reference
viPrintf
Enhanced Modifiers to ANSI C Standards

Modifier Supported with
Format Code

Description

A comma (,)
followed by an
integer n, where n
represents the
array size.

 %d (plus variants)
and %f only

The corresponding argument is interpreted as a reference to
the first element of an array of size n. The first n elements of
this list are printed in the format specified by the format code.

An asterisk (*) may be present after the , modifier, in which
case an extra arg is used. This arg must be an integer
representing the array size of the given type.

@1 %d (plus
variants)and %f
only

Converts to an IEEE 488.2 defined NR1 compatible number,
which is an integer without any decimal point (e.g., 123).

@2 %d (plus
variants)and %f
only

Converts to an IEEE 488.2 defined NR2 compatible number.
The NR2 number has at least one digit after the decimal point
(e.g., 123.45).

@3 %d (plus
variants)and %f
only

Converts to an IEEE 488.2 defined NR3 compatible number.
An NR3 number is a floating point number represented in an
exponential form (e.g., 1.2345E-67).

@H %d (plus
variants)and %f
only

Converts to an IEEE 488.2 defined <HEXADECIMAL
NUMERIC RESPONSE DATA>. The number is represented
in a base of sixteen form. Only capital letters should represent
numbers. The number is of the form #HXXX.., where XXX.. is a
hexadecimal number (e.g., #HAF35B).

@Q %d (plus
variants)and %f
only

Converts to an IEEE 488.2 defined <OCTAL NUMERIC
RESPONSE DATA>. The number is represented in a base
of eight form. The number is of the form #QYYY.., where YYY..
is an octal number (e.g., #Q71234).

@B %d (plus
variants)and %f
only

 Converts to an IEEE 488.2 defined <BINARY NUMERIC
RESPONSE DATA>. The number is represented in a base
two form. The number is of the form #BZZZ.., where ZZZ.. is
a binary number (e.g., #B011101001).
Chapter 7 253

VISA Language Reference
viPrintf
The following are the allowed format code characters. A format specifier
sequence should include one and only one format code.

Standard ANSI C Format Codes

% Send the ASCII percent (%) character.

c Argument type: A character to be sent.

d Argument type: An integer.

Modifier Interpretation

Default
functionality

Print integer in NR1 format (integer without a decimal point).

@2 or @3 The integer is converted into a floating point number and
output in the correct format.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a long integer.

Length modifier h arg is a short integer.

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The
elements of this array are separated by array size � 1
commas and output in the specified format.

f Argument type: A floating point number.

Modifier Interpretation

Default
functionality

Print a floating point number in NR2 format (a number with
at least one digit after the decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format (scientific
notation). Precision can also be specified.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a double float.
254 Chapter 7

VISA Language Reference
viPrintf
Enhanced Format Codes

Length modifier L arg is a long double.

, array size arg points to an array of floats (or doubles or long doubles),
depending on the length modifier) of size array size. The
elements of this array are separated by array size � 1
commas and output in the specified format.

s Argument type: A reference to a NULL-terminated
string that is sent to the device without change.

b Argument type: A location of a block of data.

Flag or
Modifier

Interpretation

Default
functionality

The data block is sent as an IEEE 488.2 <DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. A count (long
integer) must appear as a flag that specifies the number of
elements (by default, bytes) in the block. A field width or
precision modifier is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case,
two args are used, the first of which is a long integer specifying
the count of the number of elements in the data block. The
second arg is a reference to the data block. The size of an
element is determined by the optional length modifier (see
below), the default being byte width.

Length
modifier h

The data block is assumed to be an array of unsigned short
integers (16-bits). The count corresponds to the number of words
rather than bytes. The data is swapped and padded into
standard IEEE 488.2 (big endian) format if native computer
representation is different.

Length
modifier l

The data block is assumed to be an array of unsigned long
integers. The count corresponds to the number of longwords
(32-bits). Each longword data is swapped and padded into
standard IEEE 488.2 (big endian) format if native computer
representation is different.

Modifier Interpretation
Chapter 7 255

VISA Language Reference
viPrintf

Length
modifier z

The data block is assumed to be an array of floats. The count
corresponds to the number of floating point numbers (32-bits).
The numbers are represented in IEEE 754 (big endian) format if
native computer representation is different.

Length
modifier Z

The data block is assumed to be an array of doubles. The count
corresponds to the number of double floats (64-bits). The
numbers are represented in IEEE 754 (big endian) format if
native computer representation is different.

B Argument type: A location of a block of data. The
functionality is similar to b, except the data block is
sent as an IEEE 488.2 <INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. This
format involves sending an ASCII LF character with
the END indicator set after the last byte of the block.

y Argument Type: A location of block binary data.

Flag or Modifier Interpretation

Default
functionality

The data block is sent as raw binary data. A count (long
integer) must appear as a flag that specifies the number of
elements (by default, bytes) in the block. A field width or
precision modifier is not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a
case, two args are used, the first of which is a long integer
specifying the count of the number of elements in the data
block. The second arg is a reference to the data block. The
size of an element is determined by the optional length
modifier (see below), the default being byte width.

Length modifier
h

The data block is an array of unsigned short integers (16-bits).
The count corresponds to the number of words rather than
bytes. If the optional !ol byte order modifier is present, the
data is sent in little endian format. Otherwise, the data is sent
in standard IEEE 488.2 format. Data will be byte swapped and
padded as appropriate if native computer representation is
different.

Flag or
Modifier

Interpretation
256 Chapter 7

VISA Language Reference
viPrintf
Parameters

Return Values

Length Modifier
l

The data block is an array of unsigned long integers (32 bits) .
The count corresponds to the number of longwords rather than
bytes. If the optional !ol byte order modifier is present, the
data is sent in little endian format; otherwise, the data is sent in
standard IEE 488.2 format. Data will be byte swapped and
padded as appropriate if native computer representation is
different.

Byte order
modifier !ob

Data is sent in standard IEE 488.2 (big endian) format. This is
the default behavior if neither !ob nor !ol is present.

Byte order
modifier !ol

Data is sent in little endian format.

Flag or Modifier Interpretation

Name Direction Type Description

arg1, arg2 IN N/A Parameters format string is applied to.

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString String describing the format for
arguments.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.
Chapter 7 257

VISA Language Reference
viPrintf
See Also viVPrintf

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_IO Could not perform write function because of I/O error.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before write function completed.
258 Chapter 7

VISA Language Reference
viQueryf
viQueryf

Syntax viQueryf(ViSession vi, ViString writeFmt,
ViString readFmt, arg1, arg2,...);

Description This function performs a formatted write and read through a single operation
invocation. This function provides a mechanism of "Send, then receive"
typical to a command sequence from a commander device. In this manner,
the response generated from the command can be read immediately.

This function is a combination of the viPrintf and viScanf functions.
The first n arguments corresponding to the first format string are formatted
by using the writeFmt string and then sent to the device. The write buffer is
flushed immediately after the write portion of the operation completes. After
these actions, the response data is read from the device into the remaining
parameters (starting from parameter n + 1) using the readFmt string.

This function returns the same VISA status codes as viPrintf, viScanf,
and viFlush.

VISA functions that take a variable number of parameters (e.g., viPrintf,
viScanf, and viQueryf) are not callable from Visual Basic. Use the
corresponding viVPrintf, viVScanf and viVQueryf functions instead.

Parameters

Name Direction Type Description

arg1, arg2 IN OUT N/A Parameters on which write and read format
strings are applied.

readFmt IN ViString ViString describing the format of the
read arguments.

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString ViString describing the format of the
write arguments.
Chapter 7 259

VISA Language Reference
viQueryf
Return Values

See Also viPrintf, viScanf, viVQueryf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Successfully completed the Query operation.

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string
is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_IO Could not perform read/write operation because of
I/O error.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.
260 Chapter 7

VISA Language Reference
viRead
viRead

Syntax viRead(ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Description This function synchronously transfers data from a device. The data that is
read is stored in the buffer represented by buf. This function returns only
when the transfer terminates. Only one synchronous read function can
occur at any one time. A viRead operation can complete successfully if
one or more of the following conditions were met:

� END indicator received
� Termination character read
� Number of bytes read is equal to count

It is possible to have one, two, or all three of these conditions satisfied at the
same time.

 Parameters

NOTE

You must set specific attributes to make the read terminate under specific
conditions. See Appendix B - VISA Resource Classes.

Name Direction Type Description

buf OUT ViBuf Represents the location of a buffer to
receive data from device.

count IN ViUInt32 Number of bytes to be read.

retCount OUT ViUInt32 Represents the location of an integer that
will be set to the number of bytes actually
transferred.

vi IN ViSession Unique logical identifier to a session.
Chapter 7 261

VISA Language Reference
viRead
Special Value for retCount Parameter

Return Values

Value Description

VI_NULL Do not return the number of bytes transferred.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The function completed successfully and the
END indicator was received (for interfaces that
have END indicators).

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_SUCCESS_TERM_CHAR The specified termination character was read.

Error Codes Description

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A
character was not read from the hardware
before the next character arrived.

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has
been lost.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SETUP Unable to start read function because setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.
262 Chapter 7

VISA Language Reference
viRead
See Also viWrite

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD
and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error
occurred during transfer.

VI_ERROR_RAW_RD_PROT_
VIOL

Violation of raw read protocol occurred during
transfer.

VI_ERROR_RAW_WR_PROT_
VIOL

Violation of raw write protocol occurred during
transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

Error Codes Description
Chapter 7 263

VISA Language Reference
viReadAsync
viReadAsync

Syntax viReadAsync(ViSession vi, ViBuf buf, ViUInt32 count,
ViJobId jobId);

Description This function asynchronously transfers data from a device. The data that is
read is stored in the buffer represented by buf. This function normally returns
before the transfer terminates. An I/O Completion event is posted when the
transfer is actually completed.

This function returns jobId, which you can use either with viTerminate
to abort the operation or with an I/O Completion event to identify which
asynchronous read operation completed.

Since an asynchronous I/O request could complete before the
viReadAsync operation returns and the I/O completion event can be
distinguished based on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event
could possibly occur.

Setting the output parameter jobId before the data transfer even begins
ensures that an application can always match the jobId parameter with the
VI_ATTR_JOB_ID attribute of the I/O completion event.

If you pass VI_NULL as the jobId parameter to the viReadAsync
operation, no jobId will be returned. This option may be useful if only one
asynchronous operation will be pending at a given time. The value VI_NULL
is a reserved jobId and has a special meaning in viTerminate.

If multiple jobs are queued at the same time on the same session, an
application can use the jobId to distinguish the jobs, as they are unique
within a session.

Parameters

Name Direction Type Description

buf OUT ViBuf Represents the location of a buffer to receive
data from the device.

count IN ViUInt32 Number of bytes to be read.
264 Chapter 7

VISA Language Reference
viReadAsync
Special value for jobId Parameter

Return Values

See Also viRead, viTerminate, viWrite, viWriteAsync

jobId OUT ViJobId Represents the location of a variable that will
be set to the job identifier of this asynchronous
read operation.

vi IN ViSession Unique logical identifier to a session.

Name Direction Type Description

Value Description

VI_NULL Do not return a job identifier.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC Read operation performed synchronously.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_QUEUE_ERROR Unable to queue read operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
Chapter 7 265

VISA Language Reference
viReadSTB
viReadSTB

Syntax viReadSTB(ViSession vi, ViUInt16 status);

Description Read a status byte of the service request. This operation reads a service
request status from a service requester (the message-based device). For
example, on the IEEE 488.2 interface, the message is read by polling
devices. For other types of interfaces, a message is sent in response to a
service request to retrieve status information.

For a session to a Serial device or TCPIP socket, if VI_ATTR_IO_PROT is
VI_PROT_4882_STRS, the device is sent the string "*STB?\n" and then
the device's status byte is read. Otherwise, this operation is not valid. If the
status information is only one byte long, the most significant byte is returned
with the zero value. If the service requester does not respond in the actual
timeout period, VI_ERROR_TMO is returned.

Parameters

Return Values

Name Direction Type Description

vi IN ViSession Unique logical identifier to the session.

status OUT ViUInt16 Service request status byte.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.
266 Chapter 7

VISA Language Reference
viReadSTB
VI_ERROR_CONN_LOST The I/O connection for the given session has
been lost.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_SETUP Unable to start operation because setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_SRQ_NOCCURRED Service request has not been received for
the session.

VI_ERROR_TMO Timeout expired before function completed.

Error Codes Description
Chapter 7 267

VISA Language Reference
viReadToFile
viReadToFile

Syntax viReadToFile (ViSession vi, ViConstString fileName,
ViUInt32 count, ViUInt32 retCount);

Description Read data synchronously and store the transferred data in a file. This read
operation synchronously transfers data. The file specified in fileName is
opened in binary write-only mode.

If the value of VI_ATTR_FILE_APPEND_EN is VI_FALSE, any existing
contents are destroyed. Otherwise, the file contents are preserved. The data
read is written to the file. This operation returns only when the transfer
terminates. This operation is useful for storing raw data to be processed
later.

VISA uses ANSI C file operations. The mode used by viReadToFile is
"wb" or "ab" depending on the value of VI_ATTR_FILE_APPEND_EN.

Parameters

Special Value for retCount Parameter

Name Direction Type Description

count IN ViUInt32 Number of bytes to be read.

fileName IN ViConstString Name of file to which data will be
written.

retCount OUT ViUInt32 Number of bytes actually transferred.

vi IN ViSession Unique logical identifier to a session.

Completion Code Description

VI_NULL Do not return the number of bytes transferred.
268 Chapter 7

VISA Language Reference
viReadToFile
Return Values

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The function completed successfully and the
END indicator was received (for interfaces that
have END indicators).

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_SUCCESS_TERM_CHAR The specified termination character was read.

Error Codes Description

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A
character was not read from the hardware
before the next character arrived.

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has
been lost.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the
specified file. Possible reasons include an
invalid path or lack of access rights.

VI_ERROR_FILE_IO An error occurred while accessing the
specified file.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_SETUP Unable to start read function because setup is
invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.
Chapter 7 269

VISA Language Reference
viReadToFile
See Also viRead, viWriteFromFile

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD
and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error
occurred during transfer.

VI_ERROR_RAW_RD_PROT_
VIOL

Violation of raw read protocol occurred during
transfer.

VI_ERROR_RAW_WR_PROT_
VIOL

Violation of raw write protocol occurred during
transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

Error Codes Description
270 Chapter 7

VISA Language Reference
viScanf
viScanf

Syntax viScanf(ViSession vi, ViString readFmt, arg1, arg2,...);

Description This operation receives data from a device, formats it by using the format
string, and stores the data in the arg parameter list. The format string can
have format specifier sequences, white space characters, and ordinary
characters.

VISA functions that take a variable number of parameters (e.g., viPrintf,
viScanf, and viQueryf) are not callable from Visual Basic. Use the
corresponding viVPrintf, viVScanf, and viVQueryf functions instead.

The white characters (blank, vertical tabs, horizontal tabs, form feeds, new
line/linefeed, and carriage return) are ignored except in the case of %c and
%[]. All other ordinary characters except % should match the next character
read from the device.

A format specifier sequence consists of a %, followed by optional modifier
flags, followed by one of the format codes, in that sequence. It is of the form:

 %[modifier]format code

where the optional modifier describes the data format, while format code
indicates the nature of data (data type). One and only one format code
should be performed at the specifier sequence. A format specification
directs the conversion to the next input arg.

The results of the conversion are placed in the variable that the
corresponding argument points to, unless the asterisk (*) assignment-
suppressing character is given. In such a case, no arg is used and the
results are ignored.

The viScanf function accepts input until an END indicator is read or all
the format specifiers in the readFmt string are satisfied. It also terminates
if the format string character does not match the incoming character. Thus,
detecting an END indicator before the readFmt string is fully consumed will
result in ignoring the rest of the format string.

Also, if some data remains in the buffer after all format specifiers in the
readFmt string are satisfied, the data will be kept in the buffer and will be
used by the next viScanf function.
Chapter 7 271

VISA Language Reference
viScanf
There is a one-to-one correspondence between % format conversions and
arg parameters in formatted I/O read operations except:

� If a * is present, no arg parameters are used.

� If a # is present instead of field width, two arg parameters are used.
The first arg is a reference to an integer (%c, %s, %t, %T). This arg
defines the maximum size of the string being read. The second arg
points to the buffer that will store the read data.

� If a # is present instead of array_size, two arg parameters are used.
The first arg is a reference to an integer (%d, %f) or a reference to a
long integer (%b, %y). This arg defines the number of elements in
the array. The second arg points to the array that will store the read
data.

If a size is present in field width for the %s, %t, and %T format conversions in
formatted I/O read operations either as an integer or a # with a
corresponding arg, the size defines the maximum number of characters to
be stored in the resulting string.

For ANSI C compatibility the following conversion codes are also supported
for input codes. These codes are 'i,' 'o,' 'u,' 'n,' 'x,' 'X,' 'e,' 'E,' 'g,' 'G,' 'p,' '[...],'
and '[^...].' For further explanation of these conversion codes, see the ANSI
C Standard.

If viScanf times out, the read buffer is cleared before viScanf returns.
When viScanf times out, the next call to viScanf will read from an empty
buffer and force a read from the device. The following tables describe
optional modifiers that can be used in a format specifier sequence.
272 Chapter 7

VISA Language Reference
viScanf
ANSI C Standard Modifiers

Enhanced Modifiers to ANSI C Standards

Modifier Supported with
Format Codes

Description

An integer
representing
the field width

%s, %c, %[]
format codes

It specifies the maximum field width that the argument will take. A #
may also appear instead of the integer field width, in which case the
next arg is a reference to the field width. This arg is a reference to
an integer for %c and %s. The field width is not allowed for %d or %f.

A length
modifier (l,
h, L, z or
Z). z and Z are
not ANSI C
standard
modifiers.

h (d, b format
codes)

l (d, f, b
format codes)

L (f format
code)

z, Z (b format
code)

The argument length modifiers specify one of the following:

� The h modifier promotes the argument to be a
reference to a short integer or unsigned short integer,
depending on the format code.

� The l modifier promotes the argument to point to a
long integer or unsigned long integer.

� The L modifier promotes the argument to point to a
long double floating point parameter.

� The z modifier promotes the argument to point to an
array of floats.

� The Z modifier promotes the argument to point to an
array of double floats.

* (asterisk) All format codes An asterisk acts as the assignment suppression character. The
input is not assigned to any parameters and is discarded.

Modifier Supported with
Format Codes

Description

A comma (,)
followed by an
integer n,
where n
represents the
array size.

 %d (plus
variants) and
%f only

 The corresponding argument is interpreted as a reference to the
first element of an array of size n. The first n elements of this list are
printed in the format specified by the conversion character.

A number sign (#) may be present after the , modifier, in which
case an extra arg is used. This arg must be an integer representing
the array size of the given type.

@1 %d (plus
variants)and
%f only

Converts to an IEEE 488.2 defined NR1 compatible number, which
is an integer without any decimal point (e.g., 123).
Chapter 7 273

VISA Language Reference
viScanf
ANSI C Format Codes

@2 %d (plus
variants)and
%f only

Converts to an IEEE 488.2 defined NR2 compatible number. The
NR2 number has at least one digit after the decimal point (e.g.,
123.45).

@H %d (plus
variants)and
%f only

Converts to an IEEE 488.2 defined <HEXADECIMAL NUMERIC
RESPONSE DATA>. The number is represented
in a base of sixteen form. Only capital letters should represent
numbers. The number is of the form #HXXX.., where XXX.. is a
hexadecimal number (e.g., #HAF35B).

@Q %d (plus
variants)and
%f only

Converts to an IEEE 488.2 defined <OCTAL NUMERIC
RESPONSE DATA>. The number is represented in a base
of eight form. The number is of the form #QYYY.., where YYY..
is an octal number (e.g., #Q71234).

@B %d (plus
variants)and
%f only

Converts to an IEEE 488.2 defined <BINARY NUMERIC
RESPONSE DATA>. The number is represented in a base
two form. The number is of the form #BZZZ.., where ZZZ.. is
a binary number (e.g., #B011101001).

Modifier Supported with
Format Codes

Description

c Argument type: A reference to a character. White space in
the device input stream is not ignored when using c.

Flags or
Modifiers

Interpretation

Default
functionality

 A character is read from the device and stored in the
parameter.

field width field width number of characters are read and stored at the
reference location (the default field width is 1). No NULL
character is added at the end of the data block
274 Chapter 7

VISA Language Reference
viScanf
d Argument type: A reference to an integer.

Flags or
Modifiers

Interpretation

Default
functionality

Characters are read from the device until an entire number is
read. The number read must be in one of the following IEEE
488.2 formats: <DECIMAL NUMERIC PROGRAM DATA", also
known as NRf. Flexible numeric representation (NR1, NR2,
NR3, ...). <NON-DECIMAL NUMERIC PROGRAM DATA>
(#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier
l

arg is a reference to a long integer.

Length modifier
h

arg is a reference to a short integer. Rounding is performed
according to IEEE 488.2 rules (0.5 and up).

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The
elements of this array should be separated by commas.
Elements will be read until either array size number of
elements are consumed or they are no longer separated
by commas.

f Argument type: A reference to a floating point number.

Flags or
Modifiers

Interpretation

Default
functionality

Characters are read from the device until an entire number is
read. The number read must be in either
IEEE 488.2 formats: <DECIMAL NUMERIC PROGRAM
DATA> (NRf), or <NON-DECIMAL NUMERIC PROGRAM
DATA> (#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier
l

arg is a reference to a double floating point number.

Length modifier
L

arg is a reference to a long double number.
Chapter 7 275

VISA Language Reference
viScanf
, array size arg points to an array of floats (or doubles or long doubles,
depending on the length modifier) of size array size. The
elements of this array should be separated by commas.
Elements will be read until either array size number of
elements are consumed or they are no longer separated by
commas.

s Argument type: A reference to a string.

Flags or
Modifiers

Interpretation

Default
functionality

All leading white space characters are ignored. Characters
are read from the device into the string until a white space
character is read.

field width This flag gives the maximum string size. If the field width
contains a # sign, two arguments are used. The first argument
read gives the maximum string size. The second should be a
reference to a string.

In the case of field width characters already read before
encountering a white space, additional characters are read
and discarded until a white space character is found. In the
case of # field width, the actual number of characters read are
stored back in the integer pointed to by the first argument.

Enhanced Format Codes

b Argument type: A reference to a data array.

Flags or
Modifiers

Interpretation

Default
functionality

The data must be in IEEE 488.2 <ARBITRARY BLOCK
PROGRAM DATA> format. The format specifier sequence
should have a flag describing the array size, which will give a
maximum count of the number of bytes (or words or longwords,
depending on length modifiers) to be read from the device. If
the array size contains a # sign, two arguments are used.

Flags or
Modifiers

Interpretation
276 Chapter 7

VISA Language Reference
viScanf
Default
functionality
(continued)

The first argument read is a pointer to a long integer specifying
the maximum number of elements that the array can hold. The
second one should be a reference to an array. Also in this case,
the actual number of elements read is stored back in the first
argument. In absence of length modifiers, the data is assumed
to be of byte-size elements. In some cases, data might be read
until an END indicator is read.

Length modifier
h

The array is assumed to be an array of 16-bit words, and count
refers to the number of words. The data read from the interface
is assumed to be in IEEE 488.2 (big endian) byte ordering. It
will be byte swapped and padded as appropriate to the native
computer format.

Length modifier
l

The array is assumed to be a block of 32-bit longwords rather
than bytes, and count refers to the number of longwords. The
data read from the interface is assumed to be in IEEE 488.2
(big endian) byte ordering. It will be byte swapped and padded
as appropriate to the native computer format.

Length modifier
z

The data block is assumed to be a reference to an array of
floats, and count refers to the number of floating point numbers.
The data block received from the device is an array of 32-bit
IEEE 754 format floating point numbers.

Length modifier
Z

The data block is assumed to be a reference to an array of
doubles, and the count refers to the number of floating point
numbers. The data block received from the device is an array
of 64-bit IEEE 754 format floating point numbers.

t Argument type: A reference to a string.

Flags or
Modifiers

Interpretation

Default
functionality

Characters are read from the device until the first END indicator
is received. The character on which the END indicator was
received is included in the buffer.

field width This flag gives the maximum string size. If an END indicator is
not received before field width number of characters, additional
characters are read and discarded until an END indicator
arrives. #field width has the same meaning as in %s.

Flags or
Modifiers

Interpretation
Chapter 7 277

VISA Language Reference
viScanf
T Argument type: A reference to a string.

Flags or
Modifiers

Interpretation

Default
functionality

Characters are read from the device until the first linefeed
character (\n) is received. The linefeed character is included in
the buffer.

field width This flag gives the maximum string size. If a linefeed character
is not received before field width number of characters,
additional characters are read and discarded until a linefeed
character arrives. #field width has the same meaning as in %s.

y Argument Type: A location of block binary data.

Flag or Modifier Interpretation

Default
functionality

The data block is read as raw binary data. The format specifier
sequence should have a flag describing the array size, which
will give a maximum count of the number of bytes (or words or
longwords, depending on length modifiers) to be read from the
device. If the array size contains a # sign, two arguments are
used.

The first argument read is a pointer to a long integer specifying
the maximum number of elements that the array can hold. The
second argument should be a reference to an array. Also, in
this case, the actual number of elements read is stored back in
the first argument. In the absence of length modifiers, the data
is assumed to be of byte-size elements. In some cases, data
might be read until an END indicator is read.

Length modifier
h

The data block is assumed to be a reference to an array of
unsigned short integers (16-bits). The count corresponds to the
number of words rather than bytes. If the optional !ol byte
order modifier is present, the data being read is assumed to be
in little endian format; otherwise, the data being read is
assumed to be in standard IEE 488.2 format. Data will be byte
swapped and padded as appropriate to native computer
format.
278 Chapter 7

VISA Language Reference
viScanf
Parameters

Length Modifier
l

The data block is assumed to be a reference to an array of
unsigned long integers (32 bits) . The count corresponds to the
number of longwords rather than bytes. If the optional !ol byte
order modifier is present, the data being read is assumed to be
in little endian format. Otherwise, the data being read is
assumed to be in standard IEE 488.2 format. Data will be byte
swapped and padded as appropriate if native computer
representation is different.

Byte order
modifier !ob

Data being read is assumed to be in standard IEE 488.2 (big
endian) format. This is the default behavior if neither !ob nor
!ol is present.

Byte order
modifier !ol

Data being read is assumed to be in little endian format.

Flags or
Modifiers

Interpretation

Name Direction Type Description

arg1,
arg2

 OUT N/A A list with the variable number of
parameters into which the data is read and
the format string is applied.

readFmt IN ViString String describing the format for arguments.

vi IN ViSession Unique logical identifier to a session.
Chapter 7 279

VISA Language Reference
viScanf
Return Values

See Also viVScanf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_IO Could not perform read function because of I/O
error.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before read function completed.
280 Chapter 7

VISA Language Reference
viSetAttribute
viSetAttribute

Syntax viSetAttribute(ViSession/ViEvent/ViFindList vi,
ViAttr attribute, ViAttrState attrState);

Description This function sets the state of an attribute for the specified session. The
viSetAttribute operation is used to modify the state of an attribute
for the specified session, event, or find list.

If a resource cannot set an optional attribute state and the specified attribute
state is valid and the attribute description does not specify otherwise,
viSetAttribute returns error code VI_ERROR_NSUP_ATTR_STATE.

Both VI_WARN_NSUP_ATTR_STATE and VI_ERROR_NSUP_ATTR_STATE
indicate that the specified attribute state is not supported. Unless a specific
rule states otherwise, a resource normally returns the error code
VI_ERROR_NSUP_ATTR_STATE when it cannot set a specified attribute
state. The completion code VI_WARN_NSUP_ATTR_STATE is intended to
alert the application that although the specified optional attribute state is
not supported, the application should not fail.

One example is attempting to set an attribute value that would increase
performance speeds. This is different than attempting to set an attribute
value that specifies required but nonexistent hardware (such as specifying a
VXI ECL trigger line when no hardware support exists) or a value that would
change assumptions a resource might make about the way data is stored or
formatted (such as byte order). See specific attribute descriptions for text
that allows the completion code VI_WARN_NSUP_ATTR_STATE.

Parameters

Name Direction Type Description

attribute IN ViAttr Resource attribute for which the state
is modified.

attrState IN ViAttrState The state of the attribute to be set for
the specified resource. The
interpretation of the individual attribute
value is defined by the resource.
Chapter 7 281

VISA Language Reference
viSetAttribute
Return Values

See Also viGetAttribute. See Appendix B - VISA Resource Classes for a list of
attributes and attribute values.

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session,
event, or find list.

Name Direction Type Description

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Attribute value set successfully.

VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is
valid, it is not supported by this resource
implementation. (The application will still
work, but this may have a performance
impact.)

Error Codes Description

VI_ERROR_ATTR_READONLY The specified attribute is read-only.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the
referenced resource.

VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid,
or is not supported as defined by the
resource. (The application probably will not
work if this error is returned.)

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
282 Chapter 7

VISA Language Reference
viSetBuf
viSetBuf

Syntax viSetBuf(ViSession vi, ViUInt16 mask, ViUInt32 size);

Description Set the size for the formatted I/O and/or serial communication buffer(s).
This operation changes the buffer size of the read and/or write buffer for
formatted I/O and/or serial communication. The mask parameter specifies
whichbuffer to set the size of. The mask parameter can specify multiple
buffers by bit-ORing any of the following values together.

For backward compatibility, VI_IO_IN_BUF is the same as
VI_ASRL_IN_BUF and VI_IO_OUT_BUF is the same as
VI_ASRL_OUT_BUF.

Since not all serial drivers support user-defined buffer sizes, it is possible
that a specific implementation of VISA may not be able to control this
feature. If an application requires a specific buffer size for performance
reasons, but a specific implementation of VISA cannot guarantee that size,
it is recommended to use some form of handshaking to prevent overflow
conditions.

Parameters

Flag Interpretation

VI_READ_BUF Formatted I/O read buffer.

VI_WRITE_BUF Formatted I/O write buffer.

VI_IO_IN_BUF I/O communication receive buffer.

VI_IO_OUT_BUF I/O communication transmit buffer.

Name Direction Type Description

mask IN ViUInt16 Specifies the type of buffer.

size IN ViUInt32 The size to be set for the specified buffer(s).

vi IN ViSession Unique logical identifier to a session.
Chapter 7 283

VISA Language Reference
viSetBuf
Return Values

See Also viFlush

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

Error Codes Description

VI_ERROR_ALLOC The system could not allocate the buffer(s) of
the specified size because of insufficient system
resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given
mask.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
284 Chapter 7

VISA Language Reference
viSPrintf
viSPrintf

Syntax viSPrintf(ViSession vi, ViBuf buf,
ViString writeFmt, arg1, arg2, ...) ;

Description Same as viPrintf, except the data are written to a user-specified buffer
rather than the device. This operation is similar to viPrintf, except that
the output is not written to the device, but is written to the user-specified
buffer. This output buffer will be NULL terminated.

If the viSPrintf operations outputs an END indicator before all the
arguments are satisfied, the rest of the writeFmt string will be ignored and
the buffer string will still be terminated by a NULL.

Parameters

Return Values

Name Direction Type Description

arg1, arg2 IN N/A A list containing the variable number
of parameters on which the format
string is applied. The formatted data
are written to the specified device.

buf OUT ViBuf Buffer where data are to be written.

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string to apply to
parameters in ViVAList.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.
Chapter 7 285

VISA Language Reference
viSPrintf
See Also viPrintf

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient system resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
286 Chapter 7

VISA Language Reference
viSScanf
viSScanf

Syntax viSScanf(ViSession vi, ViBuf buf,
ViString readFmt, arg1, arg2, ...) ;

Description This operation receives data from a user-specified buffer, formats it by using
the format string, and stores the data in the arg parameter list. The format
string can have format specifier sequences, white space characters, and
ordinary characters. This function is the same as viScanf, except data
are read from a user-specified buffer instead of a device.

Parameters

Return Values

Name Direction Type Description

arg1, arg2 OUT N/A A list with the variable number of
parameters into which the data are
read and the format string is applied.

buf IN ViBuf Buffer from which data are read and
formatted.

readFmt IN ViString The format string to apply to
parameters in ViVAList.

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into
arg parameter(s).
Chapter 7 287

VISA Language Reference
viSScanf
Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient system resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
288 Chapter 7

VISA Language Reference
viStatusDesc
viStatusDesc

Syntax viStatusDesc(ViSession/ViEvent/ViFindList vi,
ViStatus status, ViString desc);

Description This function returns a user-readable string that describes the status code
passed to the function. If a status code cannot be interpreted by the session,
viStatusDesc returns the warning VI_WARN_UNKNOWN_STATUS.

Parameters

 Return Values

Name Direction Type Description

desc OUT ViString The user-readable string interpretation of
the status code passed to the function. Must
be at least 256 characters to receive output.

status IN ViStatus Status code to interpret.

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the function could
not be interpreted.
Chapter 7 289

VISA Language Reference
viTerminate
viTerminate

Syntax viTerminate(ViSession vi, ViUInt16 degree,
ViJobId jobId);

Description This function requests a VISA session to terminate normal execution of an
operation. This operation requests a session to terminate normal execution
of an operation, as specified by the jobId parameter. The jobId parameter is
a unique value generated from each call to an asynchronous operation.

If a user passes VI_NULL as the jobId value to viTerminate, a VISA
implementation should abort any calls in the current process executing on
the specified vi. Any call that is terminated this way should return
VI_ERROR_ABORT. Due to the nature of multi-threaded systems, for
example where operations in other threads may complete normally before
the operation viTerminate has any effect, the specified return value is not
guaranteed.

Parameters

 Return Values

NOTE

This function is not implemented in Agilent VISA since all I/O is done
synchronously.

Name Direction Type Description

degree IN ViUInt16 VI_NULL

jobId IN ViJobId Specifies an operation identifier.

vi IN ViSession Unique logical identifier to an object.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.
290 Chapter 7

VISA Language Reference
viTerminate
 See Also viReadAsync, viWriteAsync, viMoveAsync

Completion Code Description

VI_SUCCESS Request serviced successfully.

Error Codes Description

VI_ERROR_ABORT Calls in the current process executing on the
specified vi are aborted.

VI_ERROR_INV_DEGREE Invalid degree specified.

VI_ERROR_INV_JOB_ID Invalid job identifier specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).
Chapter 7 291

VISA Language Reference
viUninstallHandler
viUninstallHandler

Syntax viUninstallHandler(ViSession vi, ViEventType eventType,
ViHndlr handler, ViAddr userHandle);

Description This function allows applications to uninstall handlers for events on
sessions. Applications should also specify the value in the userHandle
parameter that was passed to viInstallHandler while installing the
handler.

VISA identifies handlers uniquely using the handler reference and the
userHandle. All the handlers, for which the handler reference and the
userHandle matches, are uninstalled.

Parameters

The following events are valid:

Name Direction Type Description

eventType IN ViEventType Logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a
handler to be uninstalled by an
application. (See the following table.)

userHandle IN ViAddr A value specified by an application
that can be used for identifying
handlers uniquely in a session for an
event.

vi IN ViSession Unique logical identifier to a session.

Event Name Description

VI_EVENT_IO_COMPLETION Notification that an asynchronous operation has
completed

VI_EVENT_SERVICE_REQ Notification that a device is requesting service.

VI_EVENT_TRIG Notification that a hardware trigger was received
from a device.

VI_EVENT_VXI_SIGP Notification that a VXI signal or VXI interrupt has
been received from a device.
292 Chapter 7

VISA Language Reference
viUninstallHandler
Special Value for handler Parameter

 Return Values

See Also See the handler prototype viEventHandler for its parameter description.
See the viEnableEvent description for information about enabling
different event handling mechanisms. See individual event descriptions for
context definitions.

Value Action Description

VI_ANY_HNDLR Uninstall all the handlers with the matching value in the
UserHandle parameter.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handler successfully uninstalled.

Error Codes Description

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the
specified event.

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the
user context value (or both) does not match
any installed handler.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).
Chapter 7 293

VISA Language Reference
viUnlock
viUnlock

Syntax viUnlock(ViSession vi);

Description This function is used to relinquish a lock previously obtained using the
viLock function.

Parameters

Return Values

See Also viLock. For more information on locking, see Chapter 4 - Programming
with VISA.

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The lock was successfully relinquished.

VI_SUCCESS_NESTED_
EXCLUSIVE

The call succeeded, but this session still has
nested exclusive locks.

VI_SUCCESS_NESTED_
SHARED

The call succeeded, but this session still has
nested shared locks.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given vi does not identify a valid session or
object.

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the
resource.
294 Chapter 7

VISA Language Reference
viUnmapAddress
viUnmapAddress

Syntax viUnmapAddress(ViSession vi);

Description This function unmaps memory space previously mapped by the
viMapAddress function.

Parameters

Return Values

See Also viMapAddress

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.
Chapter 7 295

VISA Language Reference
viUnmapTrigger
viUnmapTrigger

Syntax viUnmapTrigger(ViSession vi, ViInt16 trigSrc,
ViInt16 trigDest);

Description This operation can be used to map one trigger line to another. This operation
is valid only on VXI Backplane (BACKPLANE) sessions.

This operation unmaps only one trigger mapping per call. If viMapTrigger
was called multiple times on the same BACKPLANE resource and created
multiple mappings for either trigSrc or trigDest, trigger mappings other than
the one specified by trigSrc and trigDest remain in effect after this call
completes.

Parameters

Special Value for trgSrc Parameter

Name Direction Type Description

trigDest IN ViInt16 Destination line used in previous
map.

trigSrc IN ViInt16 Source line used in previous map.

vi IN ViSession Unique logical identifier to a
session.

Value Action Description

VI_TRIG_ECL0 - VI_TRIG_ECL1 Unmap the specified VXI ECL trigger line.

VI_TRIG_PANEL_IN Unmap the controller's front panel trigger
input line.

VI_TRIG_PANEL_OUT Unmap the controller's front panel trigger
output line.

VI_TRIG_TTL0 - VI_TRIG_TTL7 Unmap the specified VXI TTL trigger line.
296 Chapter 7

VISA Language Reference
viUnmapTrigger
Special Values for trigDest Parameter

Return Values

See Also BACKPLANE Resource Description

Value Action Description

VI_TRIG_ALL Unmap all trigger lines to which trigSrc is
currently connected.

VI_TRIG_ECL0 - VI_TRIG_ECL1 Unmap the specified VXI ECL trigger line.

VI_TRIG_PANEL_IN Unmap the controller's front panel trigger
input line.

VI_TRIG_PANEL_OUT Unmap the controller's front panel trigger
output line.

VI_TRIG_TTL0 - VI_TRIG_TTL7 Unmap the specified VXI TTL trigger line.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_LINE One of the specified lines (trigSrc or trigDest) is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is
not supported by this VISA implementation.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TRIG_NMAPPED The path from trigSrc to trigDest is not currently
mapped.
Chapter 7 297

VISA Language Reference
viVPrintf
viVPrintf

Syntax viVPrintf(ViSession vi, ViString writeFmt,
ViVAList params);

Description This function converts, formats, and sends params to the device as specified
by the format string. This function is similar to viPrintf, except that the
ViVAList parameters list provides the parameters rather than separate
arg parameters.

Parameters

Return Values

Name Direction Type Description

params IN ViVAList A list containing the variable number of
parameters on which the format string is
applied. The formatted data is written to
the specified device.

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string to apply to parameters
in ViVAList. See viPrintf for
description.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.
298 Chapter 7

VISA Language Reference
viVPrintf
See Also viPrintf

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_IO Could not perform write function because of I/O
error.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before write function completed.
Chapter 7 299

VISA Language Reference
viVQueryf
viVQueryf

Syntax viVQueryf(ViSession vi, ViString writeFmt, ViString
readFmt,ViVAList params);

Description This function performs a formatted write and read through a single operation
invocation. This function is similar to viQueryf, except that the ViVAList
parameters list provides the parameters rather than the separate arg
parameter list in viQueryf.

Parameters

NOTE

VISA functions that take a variable number of parameters (e.g.,
viPrintf, viScanf, and viQueryf) are not callable from Visual Basic.
Use the corresponding viVPrintf, viVScanf, and viVQueryf
functions instead.

Name Direction Type Description

params IN OUT ViVAList A list containing the variable number of write
and read parameters. The write parameters
are formatted and written to the specified
device. The read parameters store the data
read from the device after the format string
is applied to the data.

readFmt IN ViString The format string is applied to read
parameters in ViVAList.

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string is applied to write
parameters in ViVAList.
300 Chapter 7

VISA Language Reference
viVQueryf
Return Values

See Also viVPrintf, viVScanf, viQueryf

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Successfully completed the Query operation.

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string
is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_IO Could not perform read/write operation because of
I/O error.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.
Chapter 7 301

VISA Language Reference
viVScanf
viVScanf

Syntax viVScanf(ViSession vi, ViString readFmt, ViVAList params);

Description This function reads, converts, and formats data using the format specifier
and then stores the formatted data in params. This function is similar to
viScanf, except that the ViVAList parameters list provides the
parameters rather than separate arg parameters.

Parameters

Return Values

Name Direction Type Description

params OUT ViVAList A list with the variable number of
parameters into which the data is read
and the format string is applied.

readFmt IN ViString The format string to apply to parameters
in ViVAList. See viScanf for description.

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).
302 Chapter 7

VISA Language Reference
viVScanf
See Also viScanf

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_IO Could not perform read function because of I/O
error.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before read function completed.
Chapter 7 303

VISA Language Reference
viVSPrintf
viVSPrintf

Syntax viVSPrintf(ViSession vi, ViBuf buf, ViString writeFmt,
ViVAList params);

Description Same as viVPrintf, except data are written to a user-specified buffer
rather than a device. This operation is similar to viVPrintf, except the
output is not written to the device but is written to the user-specified buffer.
This output buffer will be NULL terminated.

If the viVSPrintf operation outputs an END indicator before all the
arguments are satisfied, the rest of the writeFmt string will be ignored and
the buffer string will still be terminated by a NULL.

Parameters

Return Values

Name Direction Type Description

buf OUT ViBuf Buffer where data are to be written.

params IN ViVAList A list containing the variable number of
parameters on which the format string is
applied. The formatted data are written to
the specified device.

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string to apply to parameters
in ViVAList.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.
304 Chapter 7

VISA Language Reference
viVSPrintf
See Also viSPrintf, viVPrintf

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is
not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
Chapter 7 305

VISA Language Reference
viVSScanf
viVSScanf

Syntax viVSScanf(ViSession vi, ViBuf buf, ViString readFmt,
ViVAList params);

Description This function reads, converts, and formats data using the format specifier
and then stores the formatted data in params. This operation is similar to
viVScanf, except data are read from a user-specified buffer rather than a
device.

Parameters

Return Values

Name Direction Type Description

buf IN ViBuf Buffer from which data are read and
formatted.

params OUT ViVAList A list with the variable number of
parameters into which data are read and
the format string is applied.

readFmt IN ViString The format string to apply to parameters
in ViVAList.

vi IN ViSession Unique logical identifier to a session.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data were successfully read and formatted
into arg parameter(s).
306 Chapter 7

VISA Language Reference
viVSScanf
See Also viSScanf, viVScanf

Error Codes Description

VI_ERROR_ALLOC The system could not allocate a formatted I/O
buffer because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is
not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.
Chapter 7 307

VISA Language Reference
viVxiCommandQuery
viVxiCommandQuery

Syntax viVxiCommandQuery(ViSession vi, ViUInt16 mode,
ViUInt32 cmd, ViUInt32 response);

Description Send the device a miscellaneous command or query and/or retrieve the
response to a previous query. This operation can send a command or query
or receive a response to a query previously sent to the device. The mode
parameter specifies whether to issue a command and/or retrieve a
response, and what type or size of command and/or response to use.

If the mode parameter specifies sending a 16-bit command, the upper half of
the cmd parameter is ignored. If the mode parameter specifies just retrieving
a response, the cmd parameter is ignored. If the mode parameter specifies
sending a command only, the response parameter is ignored and may be
VI_NULL. If a response is retrieved but is only a 16-bit value, the upper half
of the response parameter will be set to 0.

Refer to the VXI Specification for defined word serial commands. The
command values Byte Available, Byte Request, Clear, and
Trigger are not valid for this operation.

Parameters

Name Direction Type Description

cmd IN ViUInt32 The miscellaneous command to send.

mode IN ViBuf Specifies whether to issue a command
and/or retrieve a response. See the
Description section for actual values.

response OUT ViUInt32 The response retrieved from the device.
If the mode specifies sending a command,
this parameter may be VI_NULL.

vi IN ViSession Unique logical identifier to a session.
308 Chapter 7

VISA Language Reference
viVxiCommandQuery
Special Values for mode Parameter

Return Values

Mode Action Description

VI_VXI_CMD16 Send 16-bit Word Serial command.

VI_VXI_CMD16_RESP16 Send 16-bit Word Serial query, get 16-bit response.

VI_VXI_CMD32* Send 32-bit Word Serial command.

VI_VXI_CMD32_RESP16* Send 32-bit Word Serial query, get 16-bit response.

VI_VXI_CMD32_RESP32* Send 32-bit Word Serial query, get 32-bit response.

VI_VXI_RESP16* Get 16-bit response from previous query.

VI_VXI_RESP32* Get 32-bit response from previous query.

* Not supported in Agilent VISA

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error
occurred during transfer.

VI_ERROR_INV_MODE The value specified by the mode parameter
is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error
occurred during transfer.
Chapter 7 309

VISA Language Reference
viVxiCommandQuery
See Also INSTR Resource Description

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RESP_PENDING A previous response is still pending, causing
a multiple query error.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

Error Codes Description
310 Chapter 7

VISA Language Reference
viWaitOnEvent
viWaitOnEvent

Syntax viWaitOnEvent(ViSession vi, ViEventType inEventType,
ViUInt32 timeout, ViEventType outEventType,
ViEvent outContext);

Description This function waits for an occurrence of the specified event for a given
session. In particular, this function suspends execution of an application
thread and waits for an event inEventType for at least the time period
specified by timeout. See the individual event descriptions for context
definitions.

If the specified inEventType is VI_ALL_ENABLED_EVENTS, the function
waits for any event that is enabled for the given session. If the specified
timeout value is VI_TMO_INFINITE, the function is suspended indefinitely
to wait for an occurrence of an event.

If the value VI_TMO_IMMEDIATE is specified in the timeout parameter of
viWaitOnEvent, application execution is not suspended. This operation
can be used to dequeue events from an event queue by setting the timeout
value to VI_TMO_IMMEDIATE.

viWaitOnEvent removes the specified event from the event queue if one
that matches the type is available. The process of dequeuing makes an
additional space available in the queue for events of the same type.

You must call viEnableEvent to enable the reception of events of the
specified type before calling viWaitOnEvent. viWaitOnEvent does not
perform any enabling or disabling of event reception.

If the value VI_NULL is specified in the outContext parameter of
viWaitOnEvent and the return value is successful, viClose is
automatically invoked on the event context rather than returning it to the
application.

The outEventType and outContext parameters to the viWaitOnEvent
operation are optional. They can be used if the event type is known from the
inEventType parameter or if the eventContext is not needed to retrieve
additional information.
Chapter 7 311

VISA Language Reference
viWaitOnEvent
This table lists events and associated read-only attributes implemented by
Agilent VISA that can be read to get event information on a specific event.
Use the viReadSTB function to read the status byte of the service request.

Instrument Control (INSTR) Resource Events

NOTE

Since system resources are used when waiting for events
(viWaitOnEvent), the viClose function must be called to free up
event contexts (outContext).

Event Name Attributes Data Type Range

VI_EVENT_SERVICE_
REQUEST

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_
REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_STOP

VI_ATTR_SIGP_STATUS_ID ViUInt16 0 to FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A
312 Chapter 7

VISA Language Reference
viWaitOnEvent
Memory Access (MEMACC) Resource Events

GPIB Bus Interface (INTFC) Resource Events

Event Name Attributes Data Type Range

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A

Event Name Attributes Data Type Range

VI_EVENT_GPIB_CIC VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_RECV_CIC_
STATE

ViBoolean VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_TALK

VI_EVENT_GPIB_
LISTEN

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_
LISTEN

VI_EVENT_CLEAR VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_CLEAR

VI_EVENT_TRIGGER VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIGGER

VI_ATTR_RECV_TRIG_ID ViInt16 VI_TRIG_SW

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A
Chapter 7 313

VISA Language Reference
viWaitOnEvent
VXI Mainframe Backplane (BACKPLANE) Resource Events

TCPIP Socket (SOCKET) Resource Events

Parameters

Event Name Attributes Data Type Range

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_VXI_VME_
SYSFAIL

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_
SYSFAIL

VI_EVENT_VXI_VME_
SYSRESET

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_
SYSRESET

Event Name Attributes Data Type Range

VI_EVENT_IO_
COMPLETION

VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS ViStatus N/A

VI_ATTR_JOB_ID ViJobId N/A

VI_ATTR_BUFFER ViBuf N/A

VI_ATTR_RET_COUNT ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A

Name Direction Type Description

inEventType IN ViEventType Logical identifier of the event(s)
to wait for.

outContext OUT ViEvent A handle specifying the unique
occurrence of an event.

outEventType OUT ViEventType Logical identifier of the event
actually received.
314 Chapter 7

VISA Language Reference
viWaitOnEvent
Special Value for outEventType Parameter

Special Value for outContext Parameter

Return Values

timeout IN ViUInt32 Absolute time period in time
units that the resource shall wait
for a specified event to occur
before returning the time
elapsed error.
The time unit is in milliseconds.

vi IN ViSession Unique logical identifier to a
session.

Name Direction Type Description

Value Description

VI_NULL Do not return the type of event.

Value Description

VI_NULL Do not return an event context.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Wait terminated successfully on receipt of an event
occurrence. The queue is empty.

VI_SUCCESS_QUEUE_
NEMPTY

Wait terminated successfully on receipt of an event
notification. There is still at least one more event
occurrence of the specified inEventType type
available for this session.
Chapter 7 315

VISA Language Reference
viWaitOnEvent
 See Also See Chapter 4 - Programming with VISA for more information on event
handling.

Error Codes Description

VI_ERROR_INV_EVENT Specified event type is not supported by the
resource.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NENABLED The session must be enabled for events of the
specified type to receive them.

VI_ERROR_TMO Specified event did not occur within the specified
time period.
316 Chapter 7

VISA Language Reference
viWrite
viWrite

Syntax viWrite(ViSession vi, ViBuf buf, ViUInt32 count,
ViUInt32 retCount);

Description This function synchronously transfers data to a device. The data to be
written is in the buffer represented by buf. This function returns only when
the transfer terminates. Only one synchronous write function can occur at
any one time.

If you pass VI_NULL as the retCount parameter to the viWrite operation,
the number of bytes transferred will not be returned. This may be useful if it
is important to know only whether the operation succeeded or failed.

Parameters

Special value for retCount Parameter

Name Direction Type Description

buf IN ViBuf Represents the location of a data block to
be sent to device.

count IN ViUInt32 Specifies number of bytes to be written.

retCount OUT ViUInt32 Represents the location of an integer that
will be set to the number of bytes actually
transferred.

vi IN ViSession Unique logical identifier to a session.

Value Description

VI_NULL Do not return the number of bytes transferred.
Chapter 7 317

VISA Language Reference
viWrite
Return Values

See Also viRead

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Transfer completed.

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has
been lost.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error
occurred during transfer.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is
invalid (both are the same value).

VI_ERROR_INV_SETUP Unable to start write function because setup
is invalid (due to attributes being set to an
inconsistent state).

VI_ERROR_IO Unknown I/O error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is
not currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred
during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred
during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has
been locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.
318 Chapter 7

VISA Language Reference
viWriteAsync
viWriteAsync

Syntax viWriteAsync(ViSession vi, ViBuf buf, ViUInt32 count,
ViJobId jobId);

Description Write data to device asynchronously. This function asynchronously transfers
data to a device. The data to be written is in the buffer represented by buf.
This function normally returns before the transfer terminates. An I/O
Completion event is posted when the transfer is actually completed.

This function returns jobId, which you can use either with viTerminate
to abort the operation, or with an I/O Completion event to identify which
asynchronous write operation completed.

Since an asynchronous I/O request could complete before the
viWriteAsync operation returns and the I/O completion event can be
distinguished based on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event
could possibly occur. Setting the output parameter jobId before the data
transfer even begins ensures that an application can always match the jobId
parameter with the VI_ATTR_JOB_ID attribute of the I/O completion event.

If you pass VI_NULL as the jobId parameter to the viWriteAsync
operation, no jobId will be returned. The value VI_NULL is a reserved jobId
and has a special meaning in viTerminate. This option may be useful if
only one asynchronous operation will be pending at a given time. If multiple
jobs are queued at the same time on the same session, an application can
use the jobId to distinguish the jobs, as they are unique within a session.

NOTE

This function is implemented synchronously in Agilent VISA.
Chapter 7 319

VISA Language Reference
viWriteAsync
Parameters

Special value for jobId Parameter

Return Values

See Also viRead, viTerminate, viWrite, viReadAsync

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to
be sent to the device.

count IN ViUInt32 Specifies number of bytes to be written.

jobId OUT ViJobId Represents the location of a variable that
will be set to the job identifier of this
asynchronous write operation.

Value Description

VI_NULL Do not return a job identifier.

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous write operation successfully queued.

VI_SUCCESS_SYNC Write operation performed synchronously.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_QUEUE_ERROR Unable to queue write operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.
320 Chapter 7

VISA Language Reference
viWriteFromFile
viWriteFromFile

Syntax viWriteFromFile (ViSession vi, ViConstString fileName,
ViUInt32 count, ViUInt32 retCount);

Description Take data from a file and write it out synchronously. This write operation
synchronously transfers data. The file specified in fileName is opened in
binary read-only mode and the data (up to end-of-file or the number of bytes
specified in count) are read. The data is then written to the device. This
operation returns only when the transfer terminates.

This operation is useful for sending data that was already processed and/or
formatted. VISA uses ANSI C file operations, so the mode used by
viWriteFromFile is "rb". If you pass VI_NULL as the retCount parameter
to the viWriteFromFile operation, the number of bytes transferred will
not be returned. This may be useful if it is important to know only whether
the operation succeeded or failed.

Parameters

Special Value for retCount Parameter

Name Direction Type Description

count IN ViUInt32 Number of bytes to be written.

fileName IN ViConstString Name of file to which data will be read.

retCount OUT ViUInt32 Number of bytes actually transferred.

vi IN ViSession Unique logical identifier to a session.

Value Dsscription

VI_NULL Do not return the number of bytes transferred.
Chapter 7 321

VISA Language Reference
viWriteFromFile
Return Values

See Also viWrite, viReadToFile

Type ViStatus This is the function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Transfer completed.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI_ERROR_TMO Timeout expired before function completed.

VI_ERROR_RAW_RW_PROT_
VIOL

Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_
VIOL

Violation of raw read protocol occurred during
transfer.

VI_ERROR_OUTP_PROT_
VIOL

Device reported input protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified
file. Possible reasons include an invalid path or
lack of access rights.

VI_ERROR_FILE_IO Error occurred while accessing the specified file.

VI_ERROR_CONN_LOST I/O connection for a session has been lost.
322 Chapter 7

A
VISA Library Information
323

VISA Library Information

This appendix provides general library information for VISA, including:

� VISA Type Definitions
� VISA Error Codes (Numerical)
� VISA Error Codes (Alphabetical)
� VISA Error Codes (by Function)
� VISA Directories Information
� Editing VISA Configuration Information
324 Appendix A

VISA Library Information
VISA Type Definitions
VISA Type Definitions
VISA Data Type Type Definition Description

ViUInt32 unsigned long A 32-bit unsigned integer.

ViPUInt32 ViUInt32 * The location of a 32-bit unsigned integer.

ViAUInt32 ViUInt32 * The location of a 32-bit unsigned integer.

ViInt32 signed long A 32-bit signed integer.

ViPInt32 ViInt32 * The location of a 32-bit signed integer.

ViAInt32 ViInt32 * The location of 32-bit signed integer.

ViUInt16 unsigned short A 16-bit unsigned integer.

ViPUInt16 ViUInt16 * The location of a 16-bit unsigned integer.

ViAUInt16 ViUInt16 * The location of a 16-bit unsigned integer.

ViInt16 signed short A 16-bit signed integer.

ViPInt16 ViInt16 * The location of a 16-bit signed integer.

ViAInt16 ViInt16 * The location of 16-bit signed integer.

ViUInt8 unsigned char An 8-bit unsigned integer.

ViPUInt8 ViUInt8 * The location of an 8-bit unsigned integer.

ViAUInt8 ViUInt8 * The location of an 8-bit unsigned integer.

ViInt8 signed char An 8-bit signed integer.

ViPInt8 ViInt8 * The location of an 8-bit signed integer.

ViAInt8 ViInt8 * The location of an 8-bit signed integer.

ViAddr void * A type that references another data type.

ViPAddr ViAddr * The location of a ViAddr .

ViChar char An 8-bit integer representing an ASCII character.

ViPChar ViChar * The location of a ViChar.

ViByte unsigned char An 8-bit unsigned integer representing an extended
ASCII character.

ViPByte ViByte * The location of a ViByte.

ViBoolean ViUInt16 A type that is either VI_TRUE or VI_FALSE.

ViPBoolean ViBoolean * The location of a ViBoolean.
Appendix A 325

VISA Library Information
VISA Type Definitions
ViBuf ViPByte The location of a block of data.

ViPBuf ViPByte The location of a block of data.

ViString ViPChar The location of a NULL-terminated ASCII string.

ViPString ViPChar The location of a NULL-terminated ASCII string.

ViStatus ViInt32 Values that correspond to VISA-defined completion and
error codes.

ViPStatus ViStatus * The location of the completion and error codes.

ViRsrc ViString A ViString type.

ViPRsrc ViString A ViString type.

ViAccessMode ViUInt32 Specifies the different mechanisms that control access
to a resource.

ViBusAddress ViUInt32 Represents the system dependent physical address.

ViBusSize ViUInt32 Represents the system dependent physical address size.

ViAttr ViUInt32 Identifies an attribute.

ViVersion ViUInt32 Specifies the current version of the resource.

ViPVersion ViVersion * The location of ViVersion.

ViAttrState ViUInt32 Specifies the type of attribute.

ViPAttrState void * The location of ViAttrState.

ViVAList va_list The location of a list of variable number of
parameters of differing types.

ViEventType ViUInt32 Specifies the type of event.

ViPEventType ViEventType * The location of a ViEventType.

ViEventFilter ViUInt32 Specifies filtering masks or other information unique
to an event.

ViObject ViUInt32 Contains attributes and can be closed when no longer
needed.

ViPObject ViObject * The location of a ViObject.

ViSession ViObject Specifies the information necessary to manage a
communication channel with a resource.

ViPSession ViPSession * The location of a ViSession.

VISA Data Type Type Definition Description
326 Appendix A

VISA Library Information
VISA Type Definitions
ViFindList ViObject Contains a reference to all resources found during a
search operation.

ViPFindList ViFindList * The location of a ViFindList.

ViEvent ViObject Contains information necessary to process an event.

ViPEvent ViEvent * The location of a ViEvent.

ViHndlr ViStatus(*)
(ViSession#
ViEventType#
ViEvent#
ViAddr)

A value representing an entry point to an operation for use
as a callback.

ViReal32 float A 32-bit# single-precision value.

ViPReal32 ViReal32 * The location of a 32-bit# single-precision value.

ViReal64 double A 64-bit# double-precision value.

ViPReal64 ViReal64 * The location of a 64-bit# double-precision value.

ViJobId ViUInt32 The location of a variable that will be set to the job
identifier.

ViKeyId ViString The location of a string.

VISA Data Type Type Definition Description
Appendix A 327

VISA Library Information
VISA Error Codes
VISA Error Codes
This section describes VISA Error Codes in three categories:

� VISA Error Codes (Numerical)
� VISA Error Codes (Alphabetical)
� VISA Error Codes (by Function)

VISA Error Codes (Numerical)
This table lists VISA completion and error codes in numerical order for hex
and decimal error values.

Hex Decimal VISA Status Code
Success Codes
3FFF0002 1073676290 VI_SUCCESS_EVENT_EN
3FFF0003 1073676291 VI_SUCCESS_EVENT_DIS
3FFF0004 1073676292 VI_SUCCESS_QUEUE_EMPTY
3FFF0005 1073676293 VI_SUCCESS_TERM_CHAR
3FFF0006 1073676294 VI_SUCCESS_MAX_CNT
3FFF007D 1073676413 VI_SUCCESS_DEV_NPRESENT
3FFF007E 1073676414 VI_SUCCESS_TRIG_MAPPED
3FFF0080 1073676416 VI_SUCCESS_QUEUE_NEMPTY
3FFF0098 1073676440 VI_SUCCESS_NCHAIN
3FFF0099 1073676441 VI_SUCCESS_NESTED_SHARED
3FFF009A 1073676442 VI_SUCCESS_NESTED_EXCLUSIVE
3FFF009B 1073676443 VI_SUCCESS_SYNC

 Warning Codes
3FFF0077 1073676407 VI_WARN_CONFIG_NLOADED
3FFF0082 1073676418 VI_WARN_NULL_OBJECT
3FFF0084 1073676420 VI_WARN_NSUP_ATTR_STATE
3FFF0085 1073676421 VI_WARN_UNKNOWN_STATUS
3FFF0088 1073676424 VI_WARN_NSUP_BUF

328 Appendix A

VISA Library Information
VISA Error Codes
Error Codes
BFFF0000 -1073807360 VI_ERROR_SYSTEM_ERROR
BFFF000E -1073807346 VI_ERROR_INV_OBJECT
BFFF000F -1073807345 VI_ERROR_RSRC_LOCKED
BFFF0010 -1073807344 VI_ERROR_INV_EXPR
BFFF0011 -1073807343 VI_ERROR_RSRC_NFOUND
BFFF0012 -1073807342 VI_ERROR_INV_RSRC_NAME
BFFF0013 -1073807341 VI_ERROR_INV_ACC_MODE
BFFF0015 -1073807339 VI_ERROR_TMO
BFFF0016 -1073807338 VI_ERROR_CLOSING_FAILED
BFFF001B -1073807333 VI_ERROR_INV_DEGREE
BFFF001C -1073807332 VI_ERROR_INV_JOB_ID
BFFF001D -1073807331 VI_ERROR_NSUP_ATTR
BFFF001E -1073807330 VI_ERROR_NSUP_ATTR_STATE
BFFF001F -1073807329 VI_ERROR_ATTR_READONLY
BFFF0020 -1073807328 VI_ERROR_INV_LOCK_TYPE
BFFF0021 -1073807327 VI_ERROR_INV_ACCESS_KEY
BFFF0026 -1073807322 VI_ERROR_INV_EVENT
BFFF0027 -1073807321 VI_ERROR_INV_MECH
BFFF0028 -1073807320 VI_ERROR_HNDLR_NINSTALLED
BFFF0029 -1073807319 VI_ERROR_INV_HNDLR_REF
BFFF002A -1073807318 VI_ERROR_INV_CONTEXT
BFFF002F -1073807313 VI_ERROR_NENABLED
BFFF0030 -1073807312 VI_ERROR_ABORT
BFFF0034 -1073807308 VI_ERROR_RAW_WR_PROT_VIOL
BFFF0035 -1073807307 VI_ERROR_RAW_RD_PROT_VIOL
BFFF0036 -1073807306 VI_ERROR_OUTP_PROT_VIOL
BFFF0037 -1073807305 VI_ERROR_INP_PROT_VIOL
BFFF0038 -1073807304 VI_ERROR_BERR
BFFF003A -1073807302 VI_ERROR_INV_SETUP
BFFF003B -1073807301 VI_ERROR_QUEUE_ERROR
BFFF003C -1073807300 VI_ERROR_ALLOC
BFFF003D -1073807299 VI_ERROR_INV_MASK

Hex Decimal VISA Status Code
Appendix A 329

VISA Library Information
VISA Error Codes
BFFF003E -1073807298 VI_ERROR_IO
BFFF003F -1073807297 VI_ERROR_INV_FMT
BFFF0041 -1073807295 VI_ERROR_NSUP_FMT
BFFF0042 -1073807294 VI_ERROR_LINE_IN_USE
BFFF0046 -1073807290 VI_ERROR_NSUP_MODE
BFFF004A -1073807286 VI_ERROR_SRQ_NOCCURRED
BFFF004E -1073807282 VI_ERROR_INV_SPACE
BFFF0051 -1073807279 VI_ERROR_INV_OFFSET
BFFF0052 -1073807278 VI_ERROR_INV_WIDTH
BFFF0054 -1073807276 VI_ERROR_NSUP_OFFSET
BFFF0055 -1073807275 VI_ERROR_NSUP_VAR_WIDTH
BFFF0057 -1073807273 VI_ERROR_WINDOW_NMAPPED
BFFF0059 -1073807271 VI_ERROR_RESP_PENDING
BFFF005F -1073807265 VI_ERROR_NLISTENERS
BFFF0060 -1073807264 VI_ERROR_NCIC
BFFF0061 -1073807263 VI_ERROR_NSYS_CNTLR
BFFF0067 -1073807257 VI_ERROR_NSUP_OPER
BFFF0068 -1073807256 VI_ERROR_INTR_PENDING
BFFF006A -1073807254 VI_ERROR_ASRL_PARITY
BFFF006B -1073807253 VI_ERROR_ASRL_FRAMING
BFFF006C -1073807252 VI_ERROR_ASRL_OVERRUN
BFFF006E -1073807250 VI_ERROR_TRIG_NMAPPED
BFFF0070 -1073807248 VI_ERROR_NSUP_ALIGN_OFFSET
BFFF0071 -1073807247 VI_ERROR_USER_BUF
BFFF0072 -1073807246 VI_ERROR_RSRC_BUSY
BFFF0076 -1073807242 VI_ERROR_NSUP_WIDTH
BFFF0078 -1073807240 VI_ERROR_INV_PARAMETER
BFFF0079 -1073807239 VI_ERROR_INV_PROT
BFFF007B -1073807237 VI_ERROR_INV_SIZE
BFFF0080 -1073807232 VI_ERROR_WINDOW_MAPPED
BFFF0081 -1073807231 VI_ERROR_NIMPL_OPER
BFFF0083 -1073807229 VI_ERROR_INV_LENGTH
BFFF0091 -1073807215 VI_ERROR_INV_MODE

Hex Decimal VISA Status Code
330 Appendix A

VISA Library Information
VISA Error Codes
VISA Error Codes (Alphabetical)
This table lists VISA completion and error codes in alphabetical order.

BFFF009C -1073807204 VI_ERROR_SESN_NLOCKED
BFFF009D -1073807203 VI_ERROR_MEM_NSHARED
BFFF009E -1073807202 VI_ERROR_LIBRARY_NFOUND
BFFF009F -1073807201 VI_ERROR_NSUP_INTR
BFFF00A0 -1073807200 VI_ERROR_INV_LINE
BFFF00A1 -1073807199 VI_ERROR_FILE_ACCESS
BFFF00A2 -1073807198 VI_ERROR_FILE_IO
BFFF00A3 -1073807197 VI_ERROR_NSUP_LINE
BFFF00A4 -1073807196 VI_ERROR_NSUP_MECH
BFFF00A5 -1073807195 VI_ERROR_INTF_NUM_NCONFIG
BFFF00A6 -1073807194 VI_ERROR_CONN_LOST

Hex Decimal VISA Status Code

Codes Description

Success Codes

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the specified
address is not responding.

VI_SUCCESS_EVENT_DIS The specified event is already disabled.

VI_SUCCESS_EVENT_EN The specified event is already enabled for at least one of the
specified mechanisms.

VI_SUCCESS_MAX_CNT The number of bytes specified were read.

VI_SUCCESS_NCHAIN Event handled successfully. Do not invoke any other handlers on
this session for this event.

VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode was successfully acquired and this
session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED The specified access mode was successfully acquired and this
session has nested shared locks.

VI_SUCCESS_QUEUE_EMPTY The event queue was empty while trying to discard queued events.

VI_SUCCESS_QUEUE_NEMPTY The event queue is not empty.
Appendix A 331

VISA Library Information
VISA Error Codes
VI_SUCCESS_SYNC The read or write operation performed synchronously.

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_TRIG_MAPPED The path from trigSrc to trigDest is already mapped.

Warning Codes

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or could not be
loaded using VISA-specified defaults.

VI_WARN_NSUP_ATTR_STATE The attribute state is not supported by this resource.

VI_WARN_NSUP_BUF The specified buffer is not supported.

VI_WARN_UNKNOWN_STATUS The status code passed to the function was unable to be
interpreted.

VI_WARN_UNKNOWN_STATUS The status code passed to the function was unable to be
interpreted.

Error Codes

VI_ERROR_ABORT Calls in the current process executing on the specified vi are
aborted.

VI_ERROR_ALLOC Insufficient system resources to open a session or to allocate the
buffer(s) or memory block of the specified size.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was not
read from the hardware before the next character arrived.

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ATTR_READONLY The attribute specified is read-only.

VI_ERROR_BERR A bus error occurred during transfer.

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures for
this session.

VI_ERROR_CONN_LOST A TCP connection is dropped as a result of �keep-alives� packets.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file. Possible
reasons include an invalid path or lack of access rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event. The
session cannot be enabled for the VI_HNDLR mode of the callback
mechanism.

Codes Description
332 Appendix A

VISA Library Information
VISA Error Codes
VI_ERROR_INP_PROT_VIOL Input protocol error occurred during transfer.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface number is
not configured.

VI_ERROR_INTR_PENDING An interrupt is still pending from a previous call.

VI_ERROR_INV_ACC_MODE The access mode specified is invalid.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid access key to the
specified resource.

VI_ERROR_INV_CONTEXT The event context specified is invalid.

VI_ERROR_INV_DEGREE The specified degree is invalid.

VI_ERROR_INV_EVENT The event type specified is invalid for the specified resource.

VI_ERROR_INV_EXPR The expression specified is invalid.

VI_ERROR_INV_FMT The format specifier is invalid for the current argument.

VI_ERROR_INV_HNDLR_REF The specified handler reference and/or the user context value
does not match the installed handler.

VI_ERROR_INV_JOB_ID The specified job identifier is invalid.

VI_ERROR_INV_LENGTH The length specified is invalid.

VI_ERROR_INV_LINE The value specified by the line parameter is invalid.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask, or the
specified mask does not specify a valid flush operation on the
read/write resource.

VI_ERROR_INV_MECH The mechanism specified for the event is invalid.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_INV_OBJECT The object reference is invalid.

VI_ERROR_INV_OFFSET The offset specified is invalid.

VI_ERROR_INV_PARAMETER The value of some parameter is invalid.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_INV_RSRC_NAME The resources specified are invalid.

VI_ERROR_INV_SESSION The session specified is invalid.

Codes Description
Appendix A 333

VISA Library Information
VISA Error Codes
VI_ERROR_INV_SETUP The setup specified is invalid, possibly due to attributes being set
to an inconsistent state, or some implementation-specific
configuration file is corrupt or does not exist.

VI_ERROR_INV_SIZE The specified size is invalid.

VI_ERROR_INV_SPACE The address space specified is invalid.

VI_ERROR_INV_WIDTH Invalid source or destination width specified.

VI_ERROR_IO Could not perform read/write function because of an I/O error
or an unknown I/O error occurred during transfer.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located or loaded.

VI_ERROR_LINE_IN_USE The specified trigger line is in use.

VI_ERROR_MEM_NSHARED The device does not export any memory.

VI_ERROR_NCIC The session is referring to something other than the controller in
charge.

VI_ERROR_NENABLED The session must be enabled for events of the specified type to
receive them.

VI_ERROR_NIMPL_OPER The given operation is not implemented.

VI_ERROR_NLISTENERS No listeners are detected. (Both NRFD and NDAC are
deasserted.)

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the access width of
the operation.

VI_ERROR_NSUP_ATTR The attribute specified is not supported by the specified resource.

VI_ERROR_NSUP_ATTR_STATE The state specified for the attribute is not supported.

VI_ERROR_NSUP_FMT The format specifier is not supported for the current argument
type.

VI_ERROR_NSUP_INTR The interface cannot generate an interrupt on the requested level
or with the requested statusID value.

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is not supported by
this VISA implementation.

VI_ERROR_NSUP_MECH The specified mechanism is not supported for the given event
type.

VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA implementation.

VI_ERROR_NSUP_OFFSET The offset specified is not accessible.

Codes Description
334 Appendix A

VISA Library Information
VISA Error Codes
VI_ERROR_NSUP_OPER The operation specified is not supported in the given session.

VI_ERROR_NSUP_VAR_WIDTH The specified mode is not supported by this VISA implementation.

VI_ERROR_NSUP_WIDTH The specified width is not supported by this hardware.

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the system
controller.

VI_ERROR_OUTP_PROT_VIOL Output protocol error occurred during transfer.

VI_ERROR_QUEUE_ERROR Unable to queue read or write operation.

VI_ERROR_RAW_RD_PROT_VIOL A violation of raw read protocol occurred during a transfer.

VI_ERROR_RAW_WR_PROT_VIOL A violation of raw write protocol occurred during a transfer.

VI_ERROR_RESP_PENDING A previous response is still pending, causing a multiple query
error.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently access it.

VI_ERROR_RSRC_LOCKED The specified operation could not be performed because the
resource identifed by vi has been locked for this kind of access.

VI_ERROR_RSRC_NFOUND The expression specified does not match any device, or resource
was not found.

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the resource.

VI_ERROR_SRQ_NOCCURED A service request has not been received for the session.

VI_ERROR_SYSTEM_ERROR Unknown system error.

VI_ERROR_TMO The operation failed to complete within the specified timeout
period.

VI_ERROR_TRIG_UNMAPPED The path from trigSrc to trigDest is not currently mapped.

VI_ERROR_USER_BUF A specified user buffer is not valid or cannot be accessed for the
required size.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped window.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

Codes Description
Appendix A 335

VISA Library Information
VISA Error Codes
VISA Error Codes (by Function)
VISA functions are listed in alphabetical order with associated completion
and error codes for each function.

viAssertIntrSignal(vi, mode, statusID);

viAssertTrigger(vi, protocol);

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INTR_PENDING An interrupt is still pending from a previous call.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_INTR The interface cannot generate an interrupt on the requested
level or with the requested statusID value.

VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA
implementation.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Specified trigger was successfully asserted to the device.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.
336 Appendix A

VISA Library Information
VISA Error Codes
viAssertUtilSignal(vi, line);

viBufRead (vi, buf, count, retCount);

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_LINE The value specified by the line parameter is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before operation completed.

Codes Description

VI_SUCCESS The operation completed successfully and the END indicator
was received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Codes Description
Appendix A 337

VISA Library Information
VISA Error Codes
viBufWrite (vi, buf, count, retCount);

viClear(vi);

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are
the same value).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_SETUP Unable to start write operation because
setup is invalid (due to attributes being set
to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

Codes Description
338 Appendix A

VISA Library Information
VISA Error Codes
viClose(vi);

viDisableEvent(vi, eventType, mechanism);

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description

VI_SUCCESS Session closed successfully.

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data structures
corresponding to this session or object reference.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

Codes Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least one of the
specified mechanisms.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

Codes Description
Appendix A 339

VISA Library Information
VISA Error Codes
viDiscardEvents(vi, eventType, mechanism);

viEnableEvent(vi, eventType, mechanism, context);

viEventHandler(vi, eventType, context, userHandle);

Codes Description

VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue empty.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

Codes Description

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN The specified event is already enabled for at least one of
the specified mechanisms.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event.
The session cannot be enabled for the VI_HNDLR mode of
the callback mechanism.

VI_ERROR_INV_CONTEXT Invalid event context specified.

VI_ERROR_INV_EVENT The specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_NSUP_MECH The specified mechanism is not supported for the given
event type.

Codes Description

VI_SUCCESS Event handled successfully.
340 Appendix A

VISA Library Information
VISA Error Codes
viFindNext(findList, instrDesc);

viFindRsrc(sesn, expr, findList, retcnt, instrDesc);

viFlush(vi, mask);

Codes Description

VI_SUCCESS Resource(s) found.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given findList is not a valid session.

VI_ERROR_NSUP_OPER The given findList does not support this function.

VI_ERROR_RSRC_NFOUND There are no more matches.

Codes Description

VI_SUCCESS Resource(s) found.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given sesn is not a valid session.

VI_ERROR_NSUP_OPER The given sesn does not support this function.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

Codes Description

VI_SUCCESS Buffers flushed successfully.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush operation
on read/write resource.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_IO Could not perform read/write operation because of I/O error.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO The read/write operation was aborted because timeout
expired while operation was in progress.
Appendix A 341

VISA Library Information
VISA Error Codes
viGetAttribute(vi, attribute, attrState);

viGpibCommand(vi, buf, count, retCount);

viGpibControlATN(vi, mode);

Codes Description

VI_SUCCESS Resource attribute retrieved successfully.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced
resource.

Codes Description

VI_SUCCESS Resource attribute retrieved successfully.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid (due
to attributes being set to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NCIC The interface associated with this session
is not currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both
NRFD and NDAC are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before operation completed.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).
342 Appendix A

VISA Library Information
VISA Error Codes
viGpibControlREN(vi, mode);

viGpibPassControl(vi, primAddr, secAddr);

VI_ERROR_NCIC The interface associated with this session is not currently the
controller in charge.

VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA
implementation.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NCIC The interface associated with this session is not currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the system
controller.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Codes Description
Appendix A 343

VISA Library Information
VISA Error Codes
viGpibSendIFC(vi);

viIn8(vi, space, offset, val8);
viIn16(vi, space, offset, val16);
viIn32(vi, space, offset, val32);

VI_ERROR_NCIC The interface associated with this session is not currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before operation completed.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the system
controller.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SPACE Invalid address space specified.

Codes Description
344 Appendix A

VISA Library Information
VISA Error Codes
viInstallHandler(vi, eventType, handler, userHandle);

viLock(vi, lockType, timeout, requestedKey, accessKey);

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the access
width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Event handler installed successfully.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned if an
application attempts to install multiple handlers for the same
event on the same session.

VI_ERROR_INV_EVENT Specified event type is not defined by the resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

Codes Description

VI_SUCCESS The specified access mode was successfully acquired.

VI_SUCCESS_NESTED_EXCLUSIVE The specified access mode was successfully acquired
and this session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED The specifed access mode was successfully acquired
and this session has nested shared locks.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed is not a valid access
key to the specified resource.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this resource.

VI_ERROR_INV_OBJECT The given object reference is invalid.

Codes Description
Appendix A 345

VISA Library Information
VISA Error Codes
viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested,address);

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_RSRC_LOCKED The specified type of lock cannot be obtained because the
resource is already locked with a lock type incompatible
with the lock requested.

VI_ERROR_TMO The specified type of lock could not be obtained within the
specified timeout period.

Codes Description

VI_SUCCESS Map successful.

VI_ERROR_ALLOC Unable to allocate window of at least the requested size.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_INV_SIZE Invalid size of window specified.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_NSUP_OFFSET Specified region is not accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Could not acquire resource or perform mapping before the
timer expired.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped window.

Codes Description
346 Appendix A

VISA Library Information
VISA Error Codes
viMapTrigger(vi, trigSrc, trigDest, mode);

viMemAlloc(vi, size, offset);

Codes Description

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_TRIG_MAPPED The path from trigSrc to trigDest is already mapped.

VI_ERROR_INV_LINE One of the specified lines (trigSrc or trigDest) is invalid.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_LINE_IN_USE One of the specified lines (trigSrc or trigDest) is in use.

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is not
supported by this VISA implementation.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before operation completed.

Codes Description

VI_SUCCESS The operation completed successfully.

VI_ERROR_ALLOC Unable to allocate shared memory block of requested size.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SIZE Invalid size specified.

VI_ERROR_MEM_NSHARED The device does not export any memory.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.
Appendix A 347

VISA Library Information
VISA Error Codes
viMemFree(vi, offset);

viMove (vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth, Length);

Codes Description

VI_SUCCESS The operation completed successfully.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_WINDOW_MAPPED The specified offset is currently in use by viMapAddress.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_OFFSET Invalid source or destination offset specified.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_INV_SPACE Invalid source or destination address space specified.

VI_ERROR_INV_WIDTH Invalid source or destination width specified.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the access
width of the operation.

VI_ERROR_NSUP_OFFSET Invalid source or destination offset is not accessible from this
hardware.

VI_ERROR_NSUP_ORDER The given vi does not support this operation.

VI_ERROR_NSUP_VAR_WIDTH Cannot support source and destination widths that are
different.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.
348 Appendix A

VISA Library Information
VISA Error Codes
viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth, Length,
jobId);

viMoveIn8(vi, space, offset, length, buf8);
viMoveIn16(vi, space, offset,l ength, buf16);
viMoveIn32(vi, space, offset, length, buf32)

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_SUCCESS_SYNC Operation performed synchronously.

VI-ERROR_QUEUE Unable to queue move operation.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_NSUP_ORDER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_INV_SPACE Invalid address space specified.

Codes Description
Appendix A 349

VISA Library Information
VISA Error Codes
viMoveOut8(vi, space, offset, length, buf8);
viMoveOut16(vi, space, offset, length, buf16);
viMoveOut32(vi, space, offset, length, buf32);

VI_ERROR_NSUP_ALIGN_OFFSET the specified offset is not properly aligned for the access
width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_NSUP_ALIGN_OFFSET the specified offset is not properly aligned for the access
width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description
350 Appendix A

VISA Library Information
VISA Error Codes
viOpen(sesn, rsrcName, accessMode, timeout, vi);

Codes Description

VI_SUCCESS Session opened successfully.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or could not
be loaded using VISA-specified defaults.

VI_ERROR_ALLOC Insufficient system resources to open a session.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface number
is not configured.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_SESSION The given sesn does not identify a valid session.

VI_ERROR_NSUP_OPER The given sesn does not support this function. For VISA,
this operation is supported only by the Default Resource
Manager session.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the
resource is already locked with a lock type incompatible with
the lock requested.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in
the system.

VI_ERROR_TMO A session to the resource could not be obtained within the
specified timeout period.

VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the specified
address is not responding.
Appendix A 351

VISA Library Information
VISA Error Codes
viOpenDefaultRM(sesn);

viOut8(vi, space, offset, val8);
viOut16(vi, space, offset, val16);
viOut32(vi, space, offset,v al32);

Codes Description

VI_SUCCESS Session to the Default Resource Manager resource created
successfully.

VI_ERROR_ALLOC Insufficient system resources to create a session to the
Default Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is corrupt or
does not exist.

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the access
width of the operation.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.
352 Appendix A

VISA Library Information
VISA Error Codes
viParseRsrc(sesn, rsrcName, intfType, intfNum);

viPeek8(vi, addr, val8);
viPeek16(vi, addr, val16);
viPeek32(vi, addr, val32);
These functions do not return any completion or error codes.

viPoke8(vi, addr, val8);
viPoke16(vi, addr, val16);
viPoke32(vi, addr, val32);
These functions do not return any completion or error codes.

viPrintf(vi, writeFmt, arg1, arg2);

Codes Description

VI_SUCCESS Resource string is valid.

VI_ERROR_ALLOC Insufficient system resources to parse the string.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface number
is not configured.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located or
loaded.

VI_ERROR_NSUP_OPER The given sesn does not support this operation. For VISA,
this operation is supported only by the Default Resource
Manager session.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not present in
the system.

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.
Appendix A 353

VISA Library Information
VISA Error Codes
viQueryf(vi, writeFmt, readFmt, arg1, arg2);

viRead(vi, buf, count, retCount);

VI_ERROR_IO Could not perform write operation because of I/O error.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before write operation completed.

Codes Description

VI_SUCCESS Successfully completed the Query operation.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is
invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_IO Could not perform read/write operation because of I/O error.

VI_ERROR_NSUP_FMT The format specifier is not supported for current argument
type.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout occurred before read/write operation completed.

Codes Description

VI_SUCCESS The operation completed successfully and the END indicator
was received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

Codes Description
354 Appendix A

VISA Library Information
VISA Error Codes
viReadAsync(vi, buf, count, jobId);

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was
not read from the hardware before the next character
arrived.

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description

VI_SUCCESS Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC Read operation performed synchronously.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_QUEUE_ERROR Unable to queue read operation.

Codes Description
Appendix A 355

VISA Library Information
VISA Error Codes
viReadSTB(vi, status);

viReadToFile (vi, fileName, count, retCount);

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description

VI_SUCCESS The function completed successfully and the END indicator
was received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Codes Description
356 Appendix A

VISA Library Information
VISA Error Codes
VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character was
not read from the hardware before the next character
arrived.

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.
Possible reasons include an invalid path or lack of access
rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_SETUP Unable to start read function because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not currently the
controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description
Appendix A 357

VISA Library Information
VISA Error Codes
viScanf(vi, readFmt, arg1, arg2);

viSetAttribute(vi, attribute, attrState);

Codes Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before read operation completed.

Codes Description

VI_SUCCESS All attribute values set successfully.

VI_ERROR_ATTR_READONLY The specified attribute is read-only.

VI_ERROR_ATTR_READONLY The specified attribute is read-only.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced
resource.

VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is not
supported as defined by the resource.

VI_ERROR_RSRC_LOCKED The specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_WARN_NSUP_ATTR_STATE Although the specified state of the attribute is valid, it is not
supported by this resource implementation
358 Appendix A

VISA Library Information
VISA Error Codes
viSetBuf(vi, mask, size);

viSPrintf(vi, buf, writeFmt, arg1, arg2, ...);

Codes Description

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

VI_ERROR_ALLOC The system could not allocate the buffer(s) of the specified
size because of insufficient system resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask.
VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.
Appendix A 359

VISA Library Information
VISA Error Codes
viSScanf(vi, buf, readFmt, arg1, arg2, ...);

viStatusDesc(vi, status, desc);

viTerminate(vi, degree, jobId);

Codes Description

VI_SUCCESS Data were successfully read and formatted into arg
parameter(s).

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the function could not be
interpreted.

Codes Description

VI_SUCCESS Request serviced successfully.

VI_ERROR_ABORT Calls in the current process executing on the specified vi
are aborted.

VI_ERROR_INV_DEGREE Invalid degree specified.

VI_ERROR_INV_JOB_ID Invalid job identifier specified.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.
360 Appendix A

VISA Library Information
VISA Error Codes
viUninstallHandler(vi, eventType, handler, userHandle);

viUnlock(vi);

viUnmapAddress(vi);

Codes Description

VI_SUCCESS Event handler successfully uninstalled.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified event.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user context
value (or both) does not match any installed handler.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

Codes Description

VI_SUCCESS The lock was successfully relinquished.

VI_SUCCESS_NESTED_EXCLUSIVE The call succeeded, but this session still has nested
exclusive locks.

VI_SUCCESS_NESTED_SHARED The call succeeded, but this session still has nested shared
locks.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the resource.

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the resource.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.
Appendix A 361

VISA Library Information
VISA Error Codes
viUnmapTrigger(vi, trigSrc, trigDest);

viVPrintf(vi, writeFmt, params);

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_INV_LINE One of the specified lines (trigSrc or trigDest) is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is not
supported by this VISA implementation.

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TRIG_UNMAPPED The path from trigSrc to trigDest is not currently mapped.

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_IO Could not perform write operation because of I/O error.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before write operation completed.
362 Appendix A

VISA Library Information
VISA Error Codes
viVQueryf(vi, writeFmt, readFmt, params);

viVScanf(vi, readFmt, params);

Codes Description

VI_SUCCESS Successfully completed the Query operation.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is
invalid.

VI_ERROR_INV_OBJECT The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_IO Could not perform read/write operation because of I/O error.

VI_ERROR_NSUP_FMT The format specifier is not supported for current argument
type.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout occurred before read/write operation completed.

Codes Description

VI_SUCCESS Data were successfully read and formatted into arg
parameter(s).

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation not performed because the resource
identified by vi has been locked for this kind of access.

VI_ERROR_TMO Timeout expired before read operation completed.
Appendix A 363

VISA Library Information
VISA Error Codes
viVSPrintf(vi, buf, writeFmt, params);

viVSScanf(vi, buf, readFmt, params);

viVxiCommandQuery(vi, mode, cmd, response);

Codes Description

VI_SUCCESS Parameters were successfully formatted.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Data were successfully read and formatted into arg
parameter(s).

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient resources.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Operation completed successfully.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error occurred during
transfer.
364 Appendix A

VISA Library Information
VISA Error Codes
viWaitOnEvent(vi, ineventType, timeout, outEventType, outcontext);

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RESP_PENDING A previous response is still pending, causing a multiple query
error.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description

VI_SUCCESS Wait terminated successfully on receipt of an event
occurrence. The queue is empty.

VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event
notification. There is still at least one more event occurrence
available for this session.

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_TMO Specified event did not occur within the specified time
period.

Codes Description
Appendix A 365

VISA Library Information
VISA Error Codes
viWrite(vi, buf, count, retCount);

viWriteAsync(vi, buf, count, jobId);

Codes Description

VI_SUCCESS Transfer completed.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error occurred during
transfer.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given vi does not identify a valid session.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NCIC vi does not refer to an interface that is currently the
controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before operation completed.

Codes Description

VI_SUCCESS Asynchronous write operation successfully queued.

VI_SUCCESS_SYNC Write operation performed synchronously.

VI_ERROR_INV_OBJECT The given object reference is invalid.

VI_ERROR_INV_SESSION The given session is invalid.

VI_ERROR_QUEUE_ERROR Unable to queue write operation.
366 Appendix A

VISA Library Information
VISA Error Codes
viWriteFromFile(vi, fileName, count, retCount);

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Codes Description

VI_SUCCESS Transfer completed.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.
Possible reasons include an invalid path or lack of access
rights.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.
Possible reasons include an invalid path or lack of access
rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not currently the
controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC
are deasserted).

VI_ERROR_NSUP_OPER The given vi does not support this function.

VI_ERROR_OUTP_PROT_VIOL Device reported an input protocol error during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_RAW_RW_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before function completed.

Codes Description
Appendix A 367

VISA Library Information
VISA Directories Information
VISA Directories Information
This section provides information about the location of VISA software files.
This information can be used as reference or for removing VISA software
from your system, if necessary.

Windows Directory Structure
The VXIplug&play alliance defines directory structures to be used with the
Windows system framework. As shown in the following figure, VISA files
are automatically installed into the WIN95 subdirectory on Windows 95,
Windows 98, or Windows Me or into the WINNT subdirectory on Windows
2000 or Windows NT. The [VXIPNPPATH] defaults to \Program Files\VISA,
but can be changed during software installation.

The VISA32.DLL file is stored in the \WINDOWS\SYSTEM subdirectory
(Windows 95, Windows 98, or Windows Me) or in the \WINNT\SYSTEM32
subdirectory (Windows 2000 or Windows NT). For Windows systems, the
VISA path can be displayed by clicking the blue IO icon (near the clock on
the Windows taskbar). Then, select View Documentation and then
Installation Information to view a dialog box that contains the
VISA path information. A typical display follows.

NOTE

For Windows systems, use �Add/Remove Programs� from the Windows
Control Panel to remove files, rather than deleting them manually.
368 Appendix A

VISA Library Information
VISA Directories Information
HP-UX Directory
Structure

The VXIplug&play alliance defines a directory structure to be used with the
UNIX system framework. VISA is automatically installed into the following
directory structure on HP-UX 10.20. The [opt] is an optional path that you
can change during the software installation.

AGVISA

WINNT

[VXIPNPPATH]

KBASE
WIN95

LIB
BIN

BC
MSC

INCLUDE

SAMPLES

<INSTRUMENT>

AGVISA

LIB
BIN

BC
MSC

INCLUDE

SAMPLES

<INSTRUMENT>
Appendix A 369

VISA Library Information
VISA Directories Information
Editing the VISA Configuration
When the Agilent IO Libraries are configured, certain values are used as
defaults in the VISA configuration. In some cases, the default values may
affect your system�s performance.

If you are having system performance problems, you may need to edit the
configuration and change some default values. This section describes how
to edit the configuration for VISA on Windows 95, Windows 98, Windows
Me, Windows 2000, and Windows NT, and on HP-UX.

Editing on Windows
95/98/Me/2000/NT

When you first configured the Agilent IO Libraries, the default configuration
specified that all VISA devices would be identified at runtime. However, this
configuration is not ideal for all users.

If you are experiencing performance problems, particularly during
viFindRsrc calls, you may want to change the VISA configuration to
identify devices during configuration. This may be especially helpful if you
are using a VISA LAN client. To edit the default VISA configuration on
Windows 95/98/Me/2000 or Windows NT:

opt

vxipnp

kbase
hpux

bin
lib
include
hpvisa

share
<instrument>

examples
man
help
370 Appendix A

VISA Library Information
VISA Directories Information
1 If you have not already done so, start Windows 95/98/2000/Me or
Windows NT.

2 Run the IO Config utility from the Agilent IO Libraries program
group or from the blue IO icon on the taskbar (use Run IO
Config from the icon) .

3 Select the interface to be configured from the Configured
Interfaces box and click the Edit button. The Interface Edit
window is now displayed.

4 Click the Edit VISA Config button at the bottom of the window.
The dialog box which allows you to add devices is now displayed.
You can now manually identify devices by clicking the Add Device
button and entering the device address.

5 At this time, you may also click the Auto Add Devices button at the
bottom of the screen to automatically check for devices. If you
select this button, the utility will prompt you to make sure all devices
are connected and turned on. Once this process is complete, you
may edit this list with the Add Device and Remove Device buttons.

6 Once you have completed adding or removing devices, select the
OK button to exit the window. Then exit the IO Config utility to save
the changes you have made.

Editing on HP-UX When you first configured the Agilent IO Libraries, the default configuration
specified that all VISA devices would be identified at runtime. However, this
is not ideal for all users. If you are experiencing performance problems,
particularly during viOpenDefaultRM, you may want to change the
VISA configuration to identify devices during configuration.

To edit the default VISA configuration on HP-UX, use the following
command to run the visacfg utility:

/opt/vxipnp/hpux/hpvisa/visacfg

Follow the instructions provided in the utility. When prompted, select the
Add Device button and add all devices that will be used.

NOTE

To turn off the default of identifying devices at runtime, unselect the
Identify devices at run-time box at the top of the dialog box.
Appendix A 371

VISA Library Information
VISA Directories Information
372 Appendix A

B

VISA Resource Classes
373

VISA Resource Classes

This appendix describes VISA resource classes, including resource
overviews, attributes, events, and operations. This appendix includes:

� Resource Classes Overview
� Instrument Control (INSTR) Resource
� Memory Access (MEMACC) Resource
� GPIB Bus Interface (INTFC) Resource
� VXI Mainframe Backplane (BACKPLANE) Resource
� Servant Device-Side (SERVANT) Resource
� TCPIP Socket (SOCKET) Resource

NOTE

Although the Servant Device-Side (SERVANT) Resource is defined by
the VXIplug&play Systems Alliance Specification and is described in this
Appendix, the SERVANT Resource is not supported in Agilent VISA.
374 Appendix B

VISA Resource Classes
Resource Classes Overview
Resource Classes Overview
This section summarizes VISA resource classes and shows applicable
interface types for each resource class.

Resource Classes vs. Interface Types
The following table shows the six resource classes that a complete VISA
system, fully compliant with the VXIplug&play Systems Alliance
specification, can implement. Since not all VISA implementations may
implement all resource classes for all interfaces, the following table also
shows the interfaces applicable to various resource classes.

Resource Class Interface Types Resource Class Description

Instrument Control (INSTR) Generic, GPIB, GPIB-
VXI, Serial, TCPIP, VXI

Device operations (reading, writing,
triggering, etc.).

GPIB Bus Interface
(INTFC)

Generic, GPIB Raw GPIB interface operations
(reading, writing, triggering, etc.).

Memory Access
(MEMACC)

Generic, GPIB-VXI, VXI Address space of a memory-mapped
bus such as the VXIbus.

VXI Mainframe Backplane
(BACKPLANE)

Generic, GPIB-VXI, VXI
(GPIB-VXI Backplane
not supported)

VXI-defined operations and
properties of each backplane (or
chassis) in a VXIbus system.

Servant Device-Side
Resource (SERVANT)

Not Supported
(GPIB, VXI, TCPIP)

Operations and properties of the
capabilities of a device and a device's
view of the system in which it exists.

TCPIP Socket
(SOCKET)

Generic, TCPIP Operations and properties of a raw
network socket connection using
TCPIP.
Appendix B 375

VISA Resource Classes
Resource Classes Overview
Interface Types vs. Resource Classes
This table shows the five interface types supported by Agilent VISA and the
associated Resource Classes for each interface type.

Resource Class Descriptions
The following sections describe each of the six Resource Classes supported
by VISA. (As noted, the SERVANT Resource Class is not supported by
Agilent VISA. The description for each Resource Class includes:

� Resource Overview
� Resource Attributes
� Resource Events
� Resource Operations (Functions)

Interface Type Supported Resource Classes

ASRL Instrument Control (INSTR)

GPIB Instrument Control (INSTR)
GPIB Bus Interface (INTFC)

GPIB-VXI Instrument Control (INSTR)
Memory Access (MEMACC)

TCPIP Instrument Control (INSTR)
TCPIP Socket (SOCKET)

VXI Instrument Control (INSTR)
Memory Access (MEMACC)
VXI Mainframe Backplane (BACKPLANE)

NOTE

Attributes are local or global. A local attribute only affects the session
specified. A global attribute affects the specified device from any session.
Attributes can also be read only (RO) and read/write (RW).

The Generic Attibutes listed apply to all listed interface types. For
example, VI_ATTR_INTF_NUM is listed as a Generic INSTR Resource
Attribute, so VI_ATTR_INTF_NUM applies to the GPIB, GPIB-VXI, VXI,
ASRL, and TCPIP interfaces as well.
376 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
Instrument Control (INSTR) Resource
This section describes the Instrument Control (INSTR) Resource that is
provided to encapsulate the various operations of a device (reading, writing,
triggering, etc.).

INSTR Resource Overview
The Instrument Control (INSTR) Resource, like any other resource, defines
the basic operations and attributes of the VISA Resource Template. For
example, modifying the state of an attribute is done via the operation
viSetAttribute, which is defined in the VISA Resource Template.

Although the INSTR resource does not have viSetAttribute listed in its
operations, it provides the operation because it is defined in the VISA
Resource Template. From this basic set, each resource adds its specific
operations and attributes that allow it to perform its dedicated task, such as
sending a string to a message-based device.

The INSTR Resource lets a controller interact with the device associated
with this resource, by providing the controller with services to send blocks of
data to the device, request blocks of data from the device, send the device
clear command to the device, trigger the device, and find information about
the device's status. In addition, it allows the controller to access registers on
devices that reside on memory-mapped buses.
Appendix B 377

VISA Resource Classes
Instrument Control (INSTR) Resource
INSTR Resource Attributes

Attribute Name Access
Privilege

Data Type Range Default

Generic INSTR Resource Attributes

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI
VI_INTF_GPIB
VI_INTF_GPIB_VXI
VI_INTF_ASRL
VI_INTF_TCPIP

N/A

VI_ATTR_INTF_INST_
NAME

RO Global ViString N/A N/A

VI_ATTR_IO_PROT RW Local ViUInt16 VI_NORMAL
VI_FDC
VI_HS488
VI_PROT_488_2_STRS

VI_NORMAL

VI_ATTR_RD_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_FLUSH_
DISABLE

VI_ATTR_SEND_END_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_SUPPRESS_
END_EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TERMCHAR RW Local ViUInt8 0 to FFh 0Ah (linefeed)

VI_ATTR_TERMCHAR_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE

2000 msec

VI_ATTR_TRIG_ID RW* Local ViInt16 VI_TRIG_SW;
VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_TRIG_SW
378 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
Generic INSTR Resource Attributes (continued)

VI_ATTR_WR_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL

VI_FLUSH_
WHEN_FULL

VI_ATTR_DMA_ALLOW_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

N/A

VI_ATTR_FILE_
APPEND_EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_GPIB_
PRIMARY_ADDR

RO Global ViUInt16 0 to 30 N/A

VI_ATTR_GPIB_
SECONDARY_ADDR

RO Global ViUInt16 0 to 31,
VI_NO_SEC_ADDR

N/A

VI_ATTR_GPIB_
READDR_EN

RW Local Viboolean VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_GPIB_
UNADDR_EN

RW Local Viboolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_GPIB_
REN_STATE

RO Global ViUInt16 VI_STATE_UNKNOWN
VI_STATE_ASSERTED
VI_STATE_UNASSERTED

N/A

VXI and GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_MAINFRAME_
LA

RO Global ViInt16 0 to 255;
VI_UNKNOWN_LA

N/A

VI_ATTR_MANF_ID RO Global ViUInt16 0 to FFFh N/A

VI_ATTR_MEM_BASE RO Global ViBusAddr
ess

N/A N/A

VI_ATTR_MEM_SIZE RO Global ViBusSize N/A N/A

VI_ATTR_MEM_SPACE RO Global ViUInt16 VI_A16_SPACE
VI_A24_SPACE
VI_A32_SPACE

VI_A16_
SPACE

VI_ATTR_MODEL_CODE RO Global ViUInt16 0 to FFFFh N/A

VI_ATTR_SLOT RO Global ViInt16 0 to 12;
VI_UNKNOWN_SLOT

N/A

VI_ATTR_VXI_LA RO Global ViInt16 0 to 511 N/A

Attribute Name Access
Privilege

Data Type Range Default
Appendix B 379

VISA Resource Classes
Instrument Control (INSTR) Resource
VXI and GPIB-VXI Specific INSTR Resource Attributes (continued)

VI_ATTR_CMDR_LA RO Global ViInt16 0 to 255;
VI_UNKNOWN_LA

N/A

VI_ATTR_IMMEDIATE_
SERV

RO Global ViBoolean VI_TRUE
VI_FALSE

N/A

VI_ATTR_FDC_CHNL RW Local ViUInt16 0 to 7 N/A

VI_ATTR_FDC_GEN_
SIGNAL_EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_FDC_MODE RW Local ViUInt16 VI_FDC_NORMAL
VI_FDC_STREAM

VI_FDC_
NORMAL

VI_ATTR_FDC_USE_
PAIR

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_SRC_
INCREMENT

RW Local ViInt32 0 to 1 1

VI_ATTR_DEST_
INCREMENT

RW Local ViInt32 0 to 1 1

VI_ATTR_WIN_
ACCESS

RO Local ViUInt16 VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

VI_
NMAPPED

VI_ATTR_WIN_BASE_
ADDR

RO Local ViBusAddr
ess

N/A N/A

VI_ATTR_WIN_SIZE RO Local ViBusSize N/A N/A

VI_ATTR_SRC_BYTE_
ORDER

RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_
ENDIAN

VI_ATTR_DEST_
BYTE_ORDER

RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_
ENDIAN

VI_ATTR_WIN_
BYTE_ORDER

RW* Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_
ENDIAN

Attribute Name Access
Privilege

Data Type Range Default
380 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
VXI and GPIB-VXI Specific INSTR Resource Attributes (continued)

VI_ATTR_SRC_
ACCESS_PRIV

RW Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI-DATA_
PRIV

VI_ATTR_DEST_
ACCESS_PRIV

RW Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI-DATA_
PRIV

VI_ATTR_WIN_
ACCESS_PRIV

RW* Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

VI-DATA_
PRIV

VI_ATTR_VXI_DEV_
CLASS

RO Global ViUInt16 VI_VXI_CLASS_MEMORY
VI_VXI_CLASS_EXTENDED
VI_VXI_CLASS_MESSAGE
VI_VXI_CLASS_REGISTER
VI_VXI_CLASS_OTHER

N/A

VI_ATTR_MANF_
NAME

RO Global ViString N/A N/A

VI_ATTR_MODEL_
NAME

RO Global ViString N/A N/A

GPIB-VXI Specific INSTR Resource Attribute

VI_ATTR_INTF_
PARENT_NUM

RO Global ViUInt16 0 to FFFFh VI_ATTR_
INTF_
PARENT_NUM

Attribute Name Access
Privilege

Data Type Range Default
Appendix B 381

VISA Resource Classes
Instrument Control (INSTR) Resource
ASRL Specific INSTR Resource Attribute

VI_ATTR_ASRL_
AVAIL_NUM

RO Global ViUInt32 0 to FFFFFFFFh 0

VI_ATTR_ASRL_BAUD RW Global ViUInt32 0 to FFFFFFFFh 9600

VI_ATTR_ASRL_DATA_
BITS

RW Global ViUInt16 5 to 8 8

VI_ATTR_ASRL_
PARITY

RW Global ViUInt16 VI_ASRL_PAR_NONE
VI_ASRL_PAR_ODD
VI_ASRL_PAR_EVEN
VI_ASRL_PAR_MARK
VI_ASRL_PAR_SPACE

VI_ASRL_
PAR_NONE

VI_ATTR_ASRL_STOP_
BITS

RW Global ViUInt16 VI_ASRL_STOP_ONE
VI_ASRL_STOP_TWO

VI_ASRL_
STOP_ONE

VI_ATTR_ASRL_FLOW_
CNTRL

RW Global ViUInt16 VI_ASRL_FLOW_NONE
VI_ASRL_FLOW_XON_XOFF
VI_ASRL_FLOW_RTS_CTS
VI_ASRL_FLOW_DTR_DSR

VI_ASRL_
FLOW_NONE

VI_ATTR_ASRL_END_
IN

RW Local ViUInt16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR

VI_ASRL_
END_
TERMCHAR

VI_ATTR_ASRL_END_
OUT

RW Local ViUInt16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR
VI_ASRL_END_BREAK

VI_ASRL_
END_NONE

VI_ATTR_ASRL_CTS_
STATE

RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DCD_
STATE

RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DSR_
STATE

RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_RI_
STATE

RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

Attribute Name Access
Privilege

Data Type Range Default
382 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
ASRL Specific INSTR Resource Attribute (continued)

VI_ATTR_ASRL_DTR_
STATE

RW Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_RTS_
STATE

RW Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_
REPLACE_CHAR

RW Local ViUInt8 0 to FFh 0

VI_ATTR_ASRL_XON_
CHAR

RW Local ViUInt8 0 to FFh <Ctrl+Q>
(11h)

VI_ATTR_ASRL_XOFF_
CHAR

RW Local ViUInt8 0 to FFh <Ctrl+S>
(13h)

TCPIP Specific INSTR Resource Attributes

VI_ATTR_TCPIP_ADDR RW Global ViString N/A N/A

VI_ATTR_TCPIP_HOST
_NAME

RW Global ViString N/A N/A

VI_ATTR_TCPIP_
DEVICE_NAME

RW Global ViString N/A N/A

* The attribute VI_ATTR_TRIG_ID is RW (readable and writeable) when the corresponding session is not
enabled to receive trigger events. When the session is enabled to receive trigger events, the attribute
VI_ATTR_TRIG_ID is RO (read only).

Attribute Name Access
Privilege

Data Type Range Default
Appendix B 383

VISA Resource Classes
Instrument Control (INSTR) Resource
INSTR Resource Attribute Descriptions

Attribute Name Description

Generic INSTR Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_IO_PROT Specifies which protocol to use. In VXI systems, for example,
you can choose between normal word serial or fast data channel
(FDC). In GPIB, you can choose between normal and high-speed
(HS488) data transfers. In ASRL systems, you can choose
between normal and 488-style transfers, in which case the
viAssertTrigger/viReadSTB/viClear operations send
488.2-defined strings.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the
operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush. If the
operational mode is set to VI_FLUSH_ON_ACCESS, the buffer is
flushed every time a viScanf operation completes.

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte of the
buffer.

VI_ATTR_SUPPRESS_END_EN Whether to suppress the END indicator termination. If this
attribute is set to VI_TRUE, the END indicator does not terminate
read operations. If this attribute is set to VI_FALSE, the END
indicator terminates read operations.

VI_ATTR_TERMCHAR Termination character. When the termination character is read
and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should terminate
when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout value
of VI_TMO_IMMEDIATE means that operations should never wait
for the device to respond. A timeout value of VI_TMO_INFINITE
disables the timeout mechanism.

VI_ATTR_TRIG_ID Identifier for the current triggering mechanism.
384 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
Generic INSTR Resource Attributes (continued)

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When the
operational mode is set to VI_FLUSH_WHEN_FULL (default), the
buffer is flushed when an END indicator is written to the buffer
or when the buffer fills up.

If the operational mode is set to VI_FLUSH_ON_ACCESS, the
write buffer is flushed under the same conditions, and also every
time a viPrintf operation completes.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use
DMA (VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this affects
performance and not functionality, that behavior is acceptable.

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile will overwrite
(truncate) or append when opening a file.

GPIB and GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB device used by the given session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB device used by the given session.

VI_ATTR_GPIB_READDR_EN This attribute specifies whether to use repeat addressing before
each read or write operation.

VI_ATTR_GPIB_UNADDR_EN This attribute specifies whether to unaddress the device (UNT and
UNL) after each read or write operation.

VI_ATTR_GPIB_REN_STATE This attribute returns the current state of the GPIB REN interface
line.

VXI and GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_MAINFRAME_LA This is the logical address of a given device in the mainframe,
usually the device with the lowest logical address. Other possible
values include the logical address of the Slot 0 controller or of the
parent-side extender. Often, these are all the same value.

The purpose of this attribute is to provide a unique ID for each
mainframe. A VISA manufacturer can choose any of these
values, but must be consistent across mainframes. If this value
is not known, the attribute value returned is .

VI_ATTR_MANF_ID Manufacturer identification number of the VXIbus device.

Attribute Name Description
Appendix B 385

VISA Resource Classes
Instrument Control (INSTR) Resource
VXI and GPIB-VXI Specific INSTR Resource Attributes (continued)

VI_ATTR_MEM_BASE Base address of the device in VXIbus memory address space.
This base address is applicable to A24 or A32 address space.

VI_ATTR_MEM_SIZE Size of memory requested by the device in VXIbus address
space.

VI_ATTR_MEM_SPACE VXIbus address space used by the device. The three types are
A16 only, A16/A24, or A16/A32 memory address space.

VI_ATTR_MODEL_CODE Model code for the device.

VI_ATTR_SLOT Physical slot location of the VXIbus device. If the slot number is
not known, VI_UNKNOWN_SLOT is returned.

VI_ATTR_VXI_LA Logical address of the VXI or VME device used by the given
session. For a VME device, the logical address is actually a
pseudo-address in the range 256 to 511.

VI_ATTR_CMDR_LA Logical address of the commander of the VXI device used by
the given session.

VI_ATTR_IMMEDIATE_SERV Specifies whether the given device is an immediate servant of the
controller running VISA.

VI_ATTR_FDC_CHNL This attribute determines which FDC channel will be used to
transfer the buffer.

VI_ATTR_FDC_SIGNAL_GEN_EN Setting this attribute to VI_TRUE lets the servant send a signal
when control of the FDC channel is passed back to the
commander. This action frees the commander from having to
poll the FDC header while engaging in an FDC transfer.

VI_ATTR_FDC_MODE This attribute determines which FDC mode to use (Normal mode
or Stream mode).

VI_ATTR_FDC_USE_PAIR If set to VI_TRUE, a channel pair will be used for transferring
data. Otherwise, only one channel will be used.

VI_ATTR_SRC_INCREMENT This is used in the viMoveInXX operation to specify how much
the source offset is to be incremented after every transfer. The
default value of this attribute is 1 (that is, the source address will
be incremented by 1 after each transfer), and the viMoveInXX
operation moves from consecutive elements.

If this attribute is set to 0, the viMoveInXX operation will always
read from the same element, essentially treating the source as a
FIFO register.

Attribute Name Description
386 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
VXI and GPIB-VXI Specific INSTR Resource Attributes (continued)

VI_ATTR_DEST_INCREMENT This is used in the viMoveOutXX operation to specify how much
the destination offset is to be incremented after every transfer.
The default value of this attribute is 1 (that is, the destination
address will be incremented by 1 after each transfer), and the
viMoveOutXX operation moves into consecutive elements.

If this attribute is set to 0, the viMoveOutXX operation will always
write to the same element, essentially treating the destination as a
FIFO register.

VI_ATTR_WIN_ACCESS Modes in which the current window may be accessed: not
currently mapped, through operations viPeekXX and
viPokeXX only, or through operations and/or by directly
dereferencing the address parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR Base address of the interface bus to which this window is
mapped.

VI_ATTR_WIN_SIZE Size of the region mapped to this window.

VI_ATTR_SRC_BYTE_ORDER This attribute specifies the byte order to be used in high-level
access operations, such as viInXX and viMoveInXX, when
reading from the source.

VI_ATTR_DEST_BYTE_ORDER This attribute specifies the byte order to be used in high-level
access operations, such as viOutXX and viMoveOutXX, when
writing to the destination

VI_ATTR_WIN_BYTE_ORDER This attribute specifies the byte order to be used in low-level
access operations, such as viMapAddress, viPeekXX and
viPokeXX, when accessing the mapped window.

VI_ATTR_SRC_ACCESS_PRIV This attribute specifies the address modifier to be used in high-
level access operations, such as viInXX and viMoveInXX,
when reading from the source.

VI_ATTR_DEST_ACCESS_PRIV This attribute specifies the address modifier to be used in high-
level access operations, such as viOutXX and viMoveOutXX,
when writing to the destination.

VI_ATTR_WIN_ACCESS_PRIV This attribute specifies the address modifier to be used in low-
level access operations, such as viMapAddress, viPeekXX and
viPokeXX, when accessing the mapped window.

Attribute Name Description
Appendix B 387

VISA Resource Classes
Instrument Control (INSTR) Resource
VXI and GPIB-VXI Specific INSTR Resource Attributes (continued)

VI_ATTR_VXI_DEV_CLASS This attribute represents the VXI-defined device class to which
the resource belongs:

� message based (VI_VXI_CLASS_MESSAGE)
� register based (VI_VXI_CLASS_REGISTER)
� extended (VI_VXI_CLASS_EXTENDED)
� memory (VI_VXI_CLASS_MEMORY)

VME devices are usually either register based or belong to a
miscellaneous class (VI_VXI_CLASS_OTHER)

VI_ATTR_MANF_NAME This string attribute is the manufacturer's name. The value of this
attribute should be used for display purposes only and not for
programmatic decisions, as the value can be different between
VISA implementations and/or revisions.

VI_ATTR_MODEL_NAME This string attribute is the model name of the device. The value of
this attribute should be used for display purposes only and not for
programmatic decisions, as the value can be different between
VISA implementations and/or revisions.

VI_ATTR_VXI_TRIG_SUPPORT This attribute shows which VXI trigger lines this implementation
supports. This is a bit vector with bits 0-9 corresponding to
VI_TRIG_TTL0 through VI_TRIG_ECL1.

GPIB-VXI Specific INSTR Resource Attribute

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to which the GPIB-VXI is
attached.

ASRL Specific INSTR Resource Attributes

VI_ATTR_ASRL_AVAIL_NUM This attribute shows the number of bytes available in the global
receive buffer.

VI_ATTR_ASRL_BAUD This is the baud rate of the interface. It is represented as an
unsigned 32-bit integer so that any baud rate can be used, but
it usually requires a commonly used rate such as 300, 1200,
2400, or 9600 baud.

VI_ATTR_ASRL_DATA_BITS This is the number of data bits contained in each frame (from 5 to
8). The data bits for each frame are located in the low-order bits of
every byte stored in memory.

Attribute Name Description
388 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
ASRL Specific INSTR Resource Attributes (continued)

VI_ATTR_ASRL_PARITY This is the parity used with every frame transmitted and received.
VI_ASRL_PAR_MARK means that the parity bit exists and is
always 1. means that the parity bit exists
and is always 0.

VI_ATTR_ASRL_STOP_BITS This is the number of stop bits used to indicate the end of a frame.
The value VI_ASRL_STOP_ONE5 indicates one-and-one-half
(1.5) stop bits.

VI_ATTR_ASRL_FLOW_CNTRL If this attribute is set to VI_ATTR_ASRL_FLOW_NONE, the transfer
mechanism does not use flow control, and buffers on both sides of
the connection are assumed to be large enough to hold all data
transferred.

If this attribute is set to VI_ATTR_ASRL_FLOW_XON_XOFF, the
transfer mechanism uses the XON and XOFF characters to
perform flow control. The transfer mechanism controls input flow
by sending XOFF when the receive buffer is nearly full, and it
controls the output flow by suspending transmission when XOFF
is received.

If this attribute is set to VI_ATTR_ASRL_FLOW_RTS_CTS, the
transfer mechanism uses the RTS output signal and the CTS
input signal to perform flow control. The transfer mechanism
controls input flow by unasserting the RTS signal when the
receive buffer is nearly full, and it controls output flow by
suspending the transmission when the CTS signal is unasserted.

If this attribute is set to VI_ASRL_FLOW_DTR_DSR, the transfer
mechanism uses the DTR output signal and the DSR input signal
to perform flow control. The transfer mechanism controls input
flow by unasserting the DTR signal when the receive buffer is
nearly full, and it controls output flow by suspending the
transmission when the DSR signal is unasserted.

This attribute can specify multiple flow control mechanisms by bit-
ORing multiple values together. However, certain combinations
may not be supported by all serial ports and/or operating systems.

Attribute Name Description
Appendix B 389

VISA Resource Classes
Instrument Control (INSTR) Resource
ASRL Specific INSTR Resource Attributes (continued)

VI_ATTR_ASRL_END_IN This attribute indicates the method used to terminate read
operations. If it is set to VI_ASRL_END_NONE, the read will not
terminate until all of the requested data is received (or an error
occurs).

If it is set to VI_ASRL_END_TERMCHAR, the read will terminate as
soon as the character in VI_ATTR_TERMCHAR is received. If it is
set to VI_ASRL_END_LAST_BIT, the read will terminate as soon
as a character arrives with its last bit set. For example, if
VI_ATTR_ASRL_DATA_BITS is set to 8, then the read will
terminate when a character arrives with the 8th bit set.

VI_ATTR_ASRL_END_OUT This attribute indicates the method used to terminate write
operations. If it is set to VI_ASRL_END_NONE, the write will not
append anything to the data being written. If it is set to
VI_ASRL_END_BREAK, the write will transmit a break after all the
characters for the write have been sent. If it is set to
VI_ASRL_END_LAST_BIT, the write will send all but the last
character with the last bit clear, then transmit the last character
with the last bit set.

For example, if VI_ATTR_ASRL_DATA_BITS is set to 8, then
the write will clear the 8th bit for all but the last character, then
transmit the last character with the 8th bit set. If it is set to
VI_ASRL_END_TERMCHAR, the write will send the character in
VI_ATTR_TERMCHAR after the data being transmitted.

VI_ATTR_ASRL_CTS_STATE This attribute shows the current state of the Clear To Send (CTS)
input signal.

VI_ATTR_ASRL_DCD_STATE This attribute shows the current state of the Data Carrier Detect
(DCD) input signal. The DCD signal is often used by modems to
indicate the detection of a carrier (remote modem) on the
telephone line. The DCD signal is also known as "Receive Line
Signal Detect (RLSD)."

VI_ATTR_ASRL_DSR_STATE This attribute shows the current state of the Data Set Ready
(DSR) input signal.

VI_ATTR_ASRL_DTR_STATE This attribute is used to manually assert or unassert the Data
Terminal Ready (DTR) output signal.

VI_ATTR_ASRL_RI_STATE This attribute shows the current state of the Ring Indicator (RI)
input signal. The RI signal is often used by modems to indicate
that the telephone line is ringing.

Attribute Name Description
390 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
INSTR Resource Events
This resource defines the following events for communication with
applications, where AP = Access Privilege.

VI_EVENT_SERVICE_REQUEST
Notification that a service request was received from the device..

ASRL Specific INSTR Resource Attributes (continued)

VI_ATTR_ASRL_RTS_STATE This attribute is used to manually assert or unassert the
Request To Send (RTS) output signal. When the
VI_ATTR_ASRL_FLOW_CNTRL attribute is set to
VI_ASRL_FLOW_RTS_CTS, this attribute is ignored when
changed, but can be read to determine whether the background
flow control is asserting or unasserting the signal.

VI_ATTR_ASRL_REPLACE_CHAR This attribute specifies the character to be used to replace
incoming characters that arrive with errors (such as parity error.)

VI_ATTR_ASRL_XON_CHAR This attribute specifies the value of the XON character used for
XON/XOFF flow control (both directions). If XON/XOFF flow
control (software handshaking) is not being used, the value of this
attribute is ignored.

VI_ATTR_ASRL_XOFF_CHAR This attribute specifies the value of the XOFF character used for
XON/XOFF flow control (both directions). If XON/XOFF flow
control (software handshaking) is not being used, the value of this
attribute is ignored.

TCPIP Specific INSTR Resource Attributes

VI_ATTR_TCPIP_ADDR This is the TCPIP address of the device to which the session is
connected. This string is formatted in dot-notation.

VI_ATTR_TCPIP_HOSTNAME This specifies the host name of the device. If no host name is
available, this attribute returns an empty string.

VI_ATTR_TCPIP_DEVICE_NAME This specifies the LAN device name used by the VXI-11 protocol
during connection.

Attribute Name Description

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
SERVICE_REQ
Appendix B 391

VISA Resource Classes
Instrument Control (INSTR) Resource
VI_EVENT_VXI_SIGP
Notification that a VXIbus signal or VXIbus interrupt was received from the
device.

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the device. For VISA,
the only triggers that can be sensed are VXI hardware triggers on the
assertion edge (SYNC and ON trigger protocols only).

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
VXI_STOP

VI_ATTR_SIGP_
STATUS_ID

The 16-bit Status/ID value
retrieved during the IACK
cycle or from the Signal
register.

RO ViUInt16 0 to FFFFh

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_
TRIG_ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed

RO ViJobId N/A
392 Appendix B

VISA Resource Classes
Instrument Control (INSTR) Resource
VI_EVENT_VXI_VME_INTR
Notification that a VXIbus interrupt was received from the device. NOT
IMPLEMENTED IN AGILENT VISA.

INSTR Resource Operations
viAssertTrigger(vi, protocol)
viBufRead(vi, buf, count, retCount)
viBufWrite(vi, buf, count, retCount)
viClear(vi)
viFlush(vi, mask)
viGpibControlREN(vi, mode)

viIn16(vi, space, offset, val16)
viIn32(vi, space, offset, val32)
viIn8(vi, space, offset, val8)
viMapAddress(vi, mapSpace, mapBase, mapSize, access,

suggested, address)
viMemAlloc(vi, size, offset)
viMemFree(vi, offset)

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

ViString N/A

Event Attributes Description AP Data Type Range

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of
the event.

RO ViEventType VI_EVENT_VXI_
VME_INTR

VI_ATTR_STATUS_ID 32-bit status/ID retrieved
during the IACK cycle.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_RECV_INTR_
LEVEL

VXI interrupt level on which
the interrupt was received.

RO VIInt16 1 to 7,
VI_UNKNOWN_LEVEL
Appendix B 393

VISA Resource Classes
Instrument Control (INSTR) Resource
viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset,
destWidth, length)

viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset,
destWidth, length, jobId)

viMoveIn8(vi, space, offset, length, buf8)
viMoveIn16(vi, space, offset, length, buf16)
viMoveIn32(vi, space, offset, length, buf32)

viMoveOut8(vi, space, offset, length, buf8)
viMoveOut16(vi, space, offset, length, buf16)
viMoveOut32(vi, space, offset, length, buf32)
viOut8(vi, space, offset, val8)
viOut16(vi, space, offset, val16)
viOut32(vi, space, offset, val32)
viPeek8(vi, addr, val8)
viPeek16(vi, addr, val16)
viPeek32(vi, addr, val32)
viPoke8(vi, addr, val8)
viPoke16(vi, addr, val16)
viPoke32(vi, addr, val32)

viPrintf(vi, writeFmt, arg1, arg2, ...)
viQueryf(vi, writeFmt, readFmt, arg1, arg2, ...)
viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadSTB(vi, status)
viReadToFile(vi, fileName, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viSetBuf(vi, mask, size)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)

viUnmapAddress(vi)
viVPrintf(vi, writeFmt, params)
viVQueryf(vi, writeFmt, readFmt, params)
viVScanf(vi, readFmt, params)
viVSPrintf(vi, buf, writeFmt, params)
viVSScanf(vi, buf, readFmt, params)
viVxiCommandQuery(vi, mode, cmd, response)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)
394 Appendix B

VISA Resource Classes
Memory Access (MEMACC) Resource
Memory Access (MEMACC) Resource
This section describes the Memory Access (MEMACC) Resource that is
provided to encapsulate the address space of a memory-mapped bus, such
as the VXIbus.

MEMACC Resource Overview
The Memory Access (MEMACC) Resource encapsulates the address space
of a memory-mapped bus such as the VXIbus. A VISA Memory Access
Resource, like any other resource, starts with the basic operations and
attributes of the VISA Resource Template. For example, modifying the state
of an attribute is done via the operation viSetAttribute.

Although the MEMACC resource does not have viSetAttribute listed in
its operations, it provides the operation because it is defined in the VISA
Resource Template. From this basic set, each resource adds its specific
operations and attributes that allow it to perform its dedicated task, such as
reading a register or writing to a memory location.

The MEMACC Resource lets a controller interact with the interface
associated with this resource. It does this by providing the controller with
services to access arbitrary registers or memory addresses on memory-
mapped buses.
Appendix B 395

VISA Resource Classes
Memory Access (MEMACC) Resource
MEMACC Resource Attributes

Attribute Name Access
Privilege

Data Type Range Default

Generic MEMACC Resource Attributes

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI
VI_INTF_GPIB_VXI

N/A

VI_ATTR_INTF_INST_
NAME

RO Global ViString N/A N/A

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE

2000 msec

VI_ATTR_DMA_ALLOW_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

N/A

VXI and GPIB-VXI Specific MEMACC Resource Attributes

VI_ATTR_VXI_LA RO Global ViInt16 0 to 255 N/A

VI_ATTR_SRC_
INCREMENT

RW Local ViInt32 0 to 1 1

VI_ATTR_DEST_
INCREMENT

RW Local ViInt32 0 to 1 1

VI_ATTR_WIN_ACCESS RO Local ViUInt16 VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

VI_NMAPPED

VI_ATTR_WIN_BASE_
ADDR

RO Local ViBusAddr
ess

N/A N/A

VI_ATTR_WIN_SIZE RO Local ViBusSize N/A N/A

VI_ATTR_SRC_BYTE_
ORDER

RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_
ENDIAN

VI_ATTR_DEST_BYTE_
ORDER

RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_
ENDIAN

VI_ATTR_WIN_BYTE_
ORDER

RW* Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_
ENDIAN
396 Appendix B

VISA Resource Classes
Memory Access (MEMACC) Resource
VXI and GPIB-VXI Specific MEMACC Resource Attributes

VI_ATTR_SRC_
ACCESS_PRIV

RW Local ViUInt16 VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_
PRIV

VI_ATTR_DEST_
ACCESS_PRIV

RW Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_
PRIV

VI_ATTR_WIN_
ACCESS_PRIV

RW* Local ViUInt16 VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

VI_DATA_
PRIV

GPIB-VXI Specific MEMACC Resource Attributes

VI_ATTR_INTF_
PARENT_NUM

RO Global ViUInt16 0 to FFFFh N/A

VI_ATTR_GPIB_
PRIMARY_ADDR

RO Global ViUInt16 0 to 30 N/A

VI_ATTR_GPIB_
SECONDARY_ADDR

RO Global ViUInt16 0 to 31,
VI_NO_SEC_ADDR

N/A

* For VISA 2.2, the attributes VI_ATTR_WIN_BYTE_ORDER and VI_ATTR_WIN_ACCESS_PRIV are RW
(readable and writeable) when the corresponding session is not mapped (VI_ATTR_WIN_ACCESS = =
VI_NMAPPED). When the session is mapped, these attributes are RO (read only).

Attribute Name Access
Privilege

Data Type Range Default
Appendix B 397

VISA Resource Classes
Memory Access (MEMACC) Resource
MEMACC Resource Attribute Descriptions

Attribute Name Description

Generic MEMACC Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout value of
VI_TMO_IMMEDIATE means that operations should never wait
for the device to respond. A timeout value of VI_TMO_INFINITE
disables the timeout mechanism.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use DMA
(VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this affects
performance and not functionality, that behavior is acceptable.

VXI and GPIB-VXI Specific MEMACC Resource Attributes

VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_INCREMENT This is used in the viMoveInXX operation to specify how much
the source offset is to be incremented after every transfer. The
default value of this attribute is 1 (that is, the source address will
be incremented by 1 after each transfer), and the viMoveInXX
operation moves from consecutive elements.

If this attribute is set to 0, the viMoveInXX operation will always
read from the same element, essentially treating the source as a
FIFO register.

VI_ATTR_DEST_INCREMENT This is used in the viMoveOutXX operation to specify how much
the destination offset is to be incremented after every transfer.
The default value of this attribute is 1 (that is, the destination
address will be incremented by 1 after each transfer), and the
viMoveOutXX operation moves into consecutive elements.

If this attribute is set to 0, the viMoveOutXX operation will always
write to the same element, essentially treating the destination as a
FIFO register.
398 Appendix B

VISA Resource Classes
Memory Access (MEMACC) Resource
VXI and GPIB-VXI Specific MEMACC Resource Attributes (continued)

VI_ATTR_WIN_ACCESS Modes in which the current window may be accessed: not
currently mapped, through operations viPeekXX and
viPokeXX only, or through operations and/or by directly
dereferencing the address parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR Base address of the interface bus to which this window is
mapped.

VI_ATTR_WIN_SIZE Size of the region mapped to this window.

VI_ATTR_SRC_BYTE_ORDER This attribute specifies the byte order to be used in high-level
access operations, such as viInXX and viMoveInXX, when
reading from the source.

VI_ATTR_DEST_BYTE_ORDER This attribute specifies the byte order to be used in high-level
access operations, such as viOutXX and viMoveOutXX, when
writing to the destination.

VI_ATTR_WIN_BYTE_ORDER This attribute specifies the byte order to be used in low-level
access operations, such as viMapAddress, viPeekXX and
viPokeXX, when accessing the mapped window.

VI_ATTR_SRC_ACCESS_PRIV This attribute specifies the address modifier to be used in high-
level access operations, such as viInXX and viMoveInXX,
when reading from the source.

VI_ATTR_DEST_ACCESS_PRIV This attribute specifies the address modifier to be used in high-
level access operations, such as viOutXX and viMoveOutXX,
when writing to the destination.

VI_ATTR_WIN_ACCESS_PRIV This attribute specifies the address modifier to be used in low-
level access operations, such as viMapAddress, viPeekXX and
viPokeXX, when accessing the mapped window.

GPIB-VXI Specific MEMACC Resource Attributes

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to which the GPIB-VXI is
attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB-VXI controller used by the given
session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB-VXI controller used by the given
session.

Attribute Name Description
Appendix B 399

VISA Resource Classes
Memory Access (MEMACC) Resource
MEMACC Resource Events
This resource defines the following event for communication with
applications, where AP = Access Privilege.

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
IO_COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

RO ViString N/A
400 Appendix B

VISA Resource Classes
Memory Access (MEMACC) Resource
MEMACC Resource Operations
viIn8(vi, space, offset, val8)
viIn16(vi, space, offset, val16)
viIn32(vi, space, offset, val32)
viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested,
address)
viMove(vi, srcSpace, srcOffset, srcWidth, destSpace,

destOffset, destWidth, length)
viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset,
destWidth, length, jobId)

viMoveIn8(vi, space, offset, length, buf8)
viMoveIn16(vi, space, offset, length, buf16)
viMoveIn32(vi, space, offset, length, buf32)
viMoveOut8(vi, space, offset, length, buf8)
viMoveOut16(vi, space, offset, length, buf16)
viMoveOut32(vi, space, offset, length, buf32)

viOut8(vi, space, offset, val8)
viOut16(vi, space, offset, val16)
viOut32(vi, space, offset, val32)
viPeek8(vi, addr, val8)
viPeek16(vi, addr, val16)
viPeek32(vi, addr, val32)
viPoke8(vi, addr, val8)
viPoke16(vi, addr, val16)
viPoke32(vi, addr, val32)
viUnmapAddress(vi)
Appendix B 401

VISA Resource Classes
GPIB Bus Interface (INTFC) Resource
GPIB Bus Interface (INTFC) Resource
This section describes the GPIB Bus Interface (INTFC) Resource that is
provided to encapsulate the operations and properties of a raw GPIB
interface (reading, writing, triggering, etc.).

INTFC Resource Overview
A VISA GPIB Bus Interface (INTFC) Resource, like any other resource,
defines the basic operations and attributes of the VISA Resource Template.

For example, modifying the state of an attribute is done via the operation
viSetAttribute. Although the INTFC resource does not have
viSetAttribute listed in its operations, it provides the operation
because it is defined in the VISA Resource Template. From this basic set,
each resource adds its specific operations and attributes that allow it to
perform its dedicated task.

The INTFC Resource lets a controller interact with any devices connected
to the board associated with this resource. Services are provided to send
blocks of data onto the bus, request blocks of data from the bus, trigger
devices on the bus, and send miscellaneous commands to any or all
devices. In addition, the controller can directly query and manipulate specific
lines on the bus and also pass control to other devices with controller
capability.

INTFC Resource Attributes

Attribute Name Access
Privilege

Data Type Range Default

Generic INTFC Resource Attributes

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_GPIB VI_INTF_
GPIB

VI_ATTR_INTF_INST_
NAME

RO Global ViString N/A N/A

VI_ATTR_SEND_END_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_TRUE
402 Appendix B

VISA Resource Classes
GPIB Bus Interface (INTFC) Resource
Generic INTFC Resource Attributes (continued)

VI_ATTR_TERMCHAR RW Local ViUInt8 0 to FFh 0Ah (linefeed)

VI_ATTR_TERMCHAR_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE

2000 msec

VI_ATTR_DEV_STATUS
_BYTE

RW Global ViUInt8 0 to FFh N/A

VI_ATTR_WR_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL

VI_FLUSH_
WHEN_FULL

VI_ATTR_DMA_ALLOW_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

N/A

VI_ATTR_RD_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_FLUSH_
DISABLE

VI_ATTR_FILE_
APPEND_EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

GPIB Specific INTFC Resource Attributes

VI_ATTR_GPIB_
PRIMARY_ADDR

RW Global ViUInt16 0 to 30 N/A

VI_ATTR_GPIB_
SECONDARY_ADDR

RW Global ViUInt16 0 to 31,
VI_NO_SEC_ADDR

VI_NO_SEC_
ADDR

VI_ATTR_GPIB_REN_
STATE

RO Global ViInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_ATN_
STATE

RO Global ViInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_NDAC_
STATE

RO Global ViInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

Attribute Name Access
Privilege

Data Type Range Default
Appendix B 403

VISA Resource Classes
GPIB Bus Interface (INTFC) Resource
INTFC Resource Attribute Descriptions

GPIB Specific INTFC Resource Attributes (continued)

VI_ATTR_GPIB_SRQ_
STATE

RO Global ViInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_CIC_
STATE

RO Global ViBoolean VI_TRUE
VI_FALSE

N/A

VI_ATTR_GPIB_SYS_
CNTRL_STATE

RW Global ViBoolean VI_TRUE
VI_FALSE

N/A

VI_ATTR_GPIB_
HS488_CBL_LEN

RW Global ViInt16 1 to 15,
VI_GPIB_HS488_

DISABLED,
VI_GPIB_HS488_NIMPL

N/A

VI_ATTR_GPIB_
ADDR_STATE

RO Global ViInt16 VI_GPIB_UNADDRESSED
VI_GPIB_TALKER
VI_GPIB_LISTENER

N/A

Attribute Name Access
Privilege

Data Type Range Default

Attribute Name Description

Generic INTFC Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte
of the buffer.

VI_ATTR_TERMCHAR Termination character. When the termination character is read
and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should terminate
when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout value of
VI_TMO_IMMEDIATE means that operations should never wait
for the device to respond. A timeout value of VI_TMO_INFINITE
disables the timeout mechanism.
404 Appendix B

VISA Resource Classes
GPIB Bus Interface (INTFC) Resource
Generic INTFC Resource Attributes (continued)

VI_ATTR_DEV_STATUS_BYTE This attribute specifies the 488-style status byte of the local
controller associated with this session. If this attribute is
written and bit 6 (0x40) is set, this device or controller will
assert a service request (SRQ) if it is defined for this interface.

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When the
operational mode is set to VI_FLUSH_WHEN_FULL (default), the
buffer is flushed when an END indicator is written to the buffer, or
when the buffer fills up.

If the operational mode is set to VI_FLUSH_ON_ACCESS, the
write buffer is flushed under the same conditions, and also
every time a viPrintf operation completes.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use
DMA (VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this affects
performance and not functionality, that behavior is acceptable.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the
operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush. If the
operational mode is set to VI_FLUSH_ON_ACCESS, the buffer
is flushed every time a viScanf operation completes.

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile will overwrite
(truncate) or append when opening a file.

GPIB Specific INTFC Resource Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the local GPIB controller used by the given
session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the local GPIB controller used by the given
session.

VI_ATTR_GPIB_REN_STATE This attribute returns the current state of the GPIB REN
(Remote ENable) interface line.

VI_ATTR_GPIB_ATN_STATE This attribute shows the current state of the GPIB ATN
(ATtentioN) interface line.

VI_ATTR_GPIB_NDAC_STATE This attribute shows the current state of the GPIB NDAC
(Not Data ACcepted) interface line.

Attribute Name Description
Appendix B 405

VISA Resource Classes
GPIB Bus Interface (INTFC) Resource
INTFC Resource Events
This resource defines the following events for communication with
applications, where AP = Access Privilege.

VI_EVENT_GPIB_CIC
Notification that the GPIB controller has gained or lost CIC (controller in
charge) status.

GPIB Specific INTFC Resource Attributes (continued)

VI_ATTR_GPIB_SRQ_STATE This attribute shows the current state of the GPIB SRQ (Service
ReQuest) interface line.

VI_ATTR_GPIB_CIC_STATE This attribute shows whether the specified GPIB interface is
currently CIC (controller in charge).

VI_ATTR_GPIB_SYS_CNTRL_STATE This attribute shows whether the specified GPIB interface is
currently the system controller. In some implementations, this
attribute may be modified only through a configuration utility.
On these systems, this attribute is read only (RO).

VI_ATTR_GPIB_HS488_CBL_LEN This attribute specifies the total number of meters of GPIB cable
used in the specified GPIB interface. If HS488 is not
implemented, querying this attribute should return the value
VI_GPIB_HS488_NIMPL. On these systems, trying to set this
attribute value will return error VI_ERROR_NSUP_ATTR_STATE.

VI_ATTR_GPIB_ADDR_STATE This attribute shows whether the specified GPIB interface is
currently addressed to talk or listen, or is not addressed.

Attribute Name Description

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
CIC

VI_ATTR_GPIB_RECV_
CIC_STATE

Controller has become
controller in charge.

RO ViBoolean VI_TRUE
VI_FALSE
406 Appendix B

VISA Resource Classes
GPIB Bus Interface (INTFC) Resource
VI_EVENT_GPIB_TALK
Notification that the GPIB controller has been addressed to talk.

VI_EVENT_GPIB_LISTEN
Notification that the GPIB controller has been addressed to listen.

VI_EVENT_CLEAR
Notification that the GPIB controller has been sent a device clear message.

VI_EVENT_TRIGGER
Notification that a trigger interrupt was received from the interface.

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
TALK

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
LISTEN

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_CLEAR

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_SW

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION
Appendix B 407

VISA Resource Classes
GPIB Bus Interface (INTFC) Resource
INTFC Resource Operations
viAssertTrigger(vi, protocol)
viBufRead(vi, buf, count, retCount)
viBufWrite(vi, buf, count, retCount)
viFlush(vi, mask)
viGpibCommand(vi, buf, count, retCount)
viGpibControlATN (vi, mode)
viGpibControlREN(vi, mode)
viGpibPassControl(vi, primAddr, secAddr)
viGpibSendIFC(vi)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, fileName, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viSetBuf(vi, mask, size)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viVScanf(vi, readFmt, params)
viVSPrintf(vi, buf, writeFmt, params)
viVSScanf(vi, buf, readFmt, params)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of buffer used in an
asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME The name of the operation
generating the event.

RO ViString N/A

Event Attribute Description AP Data Type Range
408 Appendix B

VISA Resource Classes
VXI Mainframe Backplane (BACKPLANE) Resource
VXI Mainframe Backplane (BACKPLANE)
Resource
This section describes the VXI Mainframe Backplane (BACKPLANE)
Resource that encapsulates the VXI-defined operations and properties of
the backplane in a VXIbus system.

BACKPLANE Resource Overview
A VISA VXI Mainframe Backplane Resource, like any other resource, starts
with the basic operations and attributes of the VISA Resource Template.
For example, modifying the state of an attribute is done via the operation
viSetAttribute, which is defined in the VISA Resource Template.

Although the BACKPLANE resource does not have viSetAttribute
listed in its operations, it provides the operation because it is defined in the
VISA Resource Template. From this basic set, each resource adds its
specific operations and attributes that allow it to perform its dedicated task.

The BACKPLANE Resource lets a controller query and manipulate specific
lines on a specific mainframe in a given VXI system. Services are provided
to map, unmap, assert, and receive hardware triggers, and also to assert
various utility and interrupt signals. This includes advanced functionality that
may not be available in all implementations or all vendors' controllers.

A VXI system with an embedded CPU with one mainframe will always have
exactly one BACKPLANE resource. Valid examples of resource strings for
this are VXI0::0::BACKPLANE and VXI::BACKPLANE. A multi-chassis
VXI system may provide only one BACKPLANE resource total, but the
recommended way is to provide one BACKPLANE resource per chassis,
with the resource string address corresponding to the attribute
VI_ATTR_MAINFRAME_LA. If a multi-chassis VXI system provides only one
BACKPLANE resource, it is assumed to control the backplane resources in
all chasses.

NOTE

Some VXI or GPIB-VXI implementations view all chasses in a VXI system
as one entity. In these configurations, separate BACKPLANE resources
are not possible.
Appendix B 409

VISA Resource Classes
VXI Mainframe Backplane (BACKPLANE) Resource
BACKPLANE Resource Attributes

Attribute Name Access
Privilege

Data Type Range Default

Generic BACKPLANE Resource Attributes

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI
VI_INTF_GPIB_VXI

N/A

VI_ATTR_INTF_INST_
NAME

RO Global ViString N/A N/A

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE

2000 msec

VXI and GPIB-VXI Specific BACKPLANE Resource Attributes

VI_ATTR_TRIG_ID RW Local ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

N/A

VI_ATTR_MAINFRAME_
LA

RO Global ViInt16 0 to 255
VI_UNKNOWN_LA

N/A

VI_ATTR_VXI_VME_
SYSFAIL_STATE

RO Global ViInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_VXI_VME_
INTR_STATUS

RO Global ViUInt16 N/A N/A

VI_ATTR_VXI_TRIG_
STATUS

RO Global ViUInt32 N/A N/A

VI_ATTR_VXI_TRIG_
SUPPORT

RO Global ViUInt32 N/A N/A
410 Appendix B

VISA Resource Classes
VXI Mainframe Backplane (BACKPLANE) Resource
BACKPLANE Resource Attribute Descriptions

Attribute Name Description

Generic BACKPLANE Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout value
of VI_TMO_IMMEDIATE means that operations should never wait
for the device to respond. A timeout value of VI_TMO_INFINITE
disables the timeout mechanism.

VXI and GPIB-VXI Specific BACKPLANE Resource Attributes

VI_ATTR_TRIG_ID Identifier for the current triggering mechanism.

VI_ATTR_MAINFRAME_LA This is the logical address of a given device in the mainframe,
usually the device with the lowest logical address. Other possible
values include the logical address of the Slot 0 controller or of the
parent-side extender. Often, these are
all the same value.

The purpose of this attribute is to provide a unique ID for each
mainframe. A VISA manufacturer can choose any of these values,
but must be consistent across mainframes. If this value is not
known, the attribute value returned is VI_UNKNOWN_LA.

VI_ATTR_VXI_VME_SYSFAIL_
STATE

This attribute shows the current state of the VXI/VME SYSFAIL
(SYStem FAILure) backplane line.

VI_ATTR_VXI_VME_INTR_STATUS This attribute shows the current state of the VXI/VME interrupt
lines. This is a bit vector with bits 0-6 corresponding to interrupt
lines 1-7.

VI_ATTR_VXI_TRIG_STATUS This attribute shows the current state of the VXI trigger lines. This
is a bit vector with bits 0-9 corresponding to VI_TRIG_TTL0
through VI_TRIG_ECL1.

VI_ATTR_VXI_TRIG_SUPPORT This attribute shows which VXI trigger lines this implementation
supports. This is a bit vector with bits 0-9 corresponding to
VI_TRIG_TTL0 through VI_TRIG_ECL1.

Agilent VISA also returns 12 to indicate VI_TRIG_PANEL_IN for
received triggers and VI_TRIG_PANEL_OUT for asserted triggers
on Agilent VXI controllers.
Appendix B 411

VISA Resource Classes
VXI Mainframe Backplane (BACKPLANE) Resource
BACKPLANE Resource Events
This resource defines the following events for communication with
applications, where AP = Access Privilege.

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the backplane. For
VISA, the only triggers that can be sensed are VXI hardware triggers on the
assertion edge (SYNC and ON trigger protocols only).

VI_EVENT_VXI_VME_SYSFAIL
Notification that the VXI/VME SYSFAIL* line has been asserted.

VI_EVENT_VXI_VME_SYSRESET
Notification that the VXI/VME SYSRESET* line has been reset.

BACKPLANE Resource Operations
viAssertTrigger(vi, protocol)
viMapTrigger(vi, trigSrc, trigDest, mode)
viUnmapTrigger(vi, trigSrc, trigDest)

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_
VME_SYSFAIL

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_
VME_SYSRESET
412 Appendix B

VISA Resource Classes
Servant Device-Side (SERVANT) Resource
Servant Device-Side (SERVANT) Resource
This section describes the Servant Device-Side (SERVANT) Resource that
encapsulates the operations and properties of the capabilities of a device
and a device's view of the system in which it exists.

SERVANT Resource Overview
A VISA Servant Resource, like any other resource, starts with the basic
operations and attributes of the VISA Resource Template. For example,
modifying the state of an attribute is done via the operation
viSetAttribute, which is defined in the VISA Resource Template.

Although the SERVANT resource does not have viSetAttribute listed in
its operations, it provides the operation because it is defined in the VISA
Resource Template. From this basic set, each resource adds its specific
operations and attributes that allow it to perform its dedicated task.

The SERVANT Resource exposes the device-side functionality of the device
associated with this resource. Services are provided to receive blocks of
data from a commander and respond with blocks of data in return, setting a
488-style status byte, and receiving device clear and trigger events.

NOTE

The SERVANT Resource is not implemented in Agilent VISA.

The SERVANT resource is a class for advanced users who want to write
firmware code that exports device functionality across multiple interfaces.
Most VISA users will not need this level of functionality and should not
use the SERVANT resource in their applications.

A VISA user of the TCPIP SERVANT resource should be aware that each
VISA session corresponds to a unique socket connection. If the user
opens only one SERVANT session, this precludes multiple clients from
accessing the device.
Appendix B 413

VISA Resource Classes
Servant Device-Side (SERVANT) Resource
SERVANT Resource Attributes

Attribute Name Access
Privilege

Data Type Range Default

Generic SERVANT Resource Attributes

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI
VI_INTF_GPIB
VI_INTF_TCPIP

N/A

VI_ATTR_INTF_INST_
NAME

RO Global ViString N/A N/A

VI_ATTR_SEND_END_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_TERMCHAR RW Local ViUInt8 0 to FFh 0Ah (linefeed)

VI_ATTR_TERMCHAR_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE

2000 msec

VI_ATTR_DEV_STATUS
_BYTE

RW Local ViInt16 0 to FFh N/A

VI_ATTR_WR_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL

VI_FLUSH_
WHEN_FULL

VI_ATTR_DMA_ALLOW_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

N/A

VI_ATTR_RD_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_FLUSH_
DISABLE

VI_ATTR_FILE_
APPEND_EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

GPIB Specific SERVANT Resource Attributes

VI_ATTR_GPIB_
PRIMARY_ADDR

RO Global ViUInt16 0 to 30 N/A

VI_ATTR_GPIB_
SECONDARY_ADDR

RO Global ViUInt16 0 to 31
VI_NO_SEC_ADDR

VI_NO_
SEC_ADDR
414 Appendix B

VISA Resource Classes
Servant Device-Side (SERVANT) Resource
SERVANT Resource Attribute Descriptions

GPIB Specific SERVANT Resource Attributes (continued)

VI_ATTR_GPIB_REN_
STATE

RO Global ViUInt16 VI_STATE_UNKNOWN
VI_STATE_ASSERTED
VI_STATE_UNASSERTED

N/A

VI_ATTR_GPIB_ADDR_
STATE

RO Global ViUInt16 VI_GPIB_UNADDRESSED
VI_GPIB_TALKER
VI_GPIB_LISTENER

N/A

VXI Specific SERVANT Resource Attributes

VI_ATTR_VXI_LA RO Global ViUInt16 0 to 511 N/A

VI_ATTR_CMDR_LA RO Global ViUInt16 0 to 255,
VI_UNKNOWN_LA

N/A

TCPIP Specific SERVANT Resource Attributes

VI_ATTR_TCPIP_
DEVICE_NAME

RO Global ViString N/A N/A

Attribute Name Access
Privilege

Data Type Range Default

Attribute Name Description

Generic SERVANT Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte of the
buffer.

VI_ATTR_TERMCHAR Termination character. When the termination character is read
and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should terminate
when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout value
of VI_TMO_IMMEDIATE means that operations should never wait
for the device to respond. A timeout value of VI_TMO_INFINITE
disables the timeout mechanism.
Appendix B 415

VISA Resource Classes
Servant Device-Side (SERVANT) Resource
Generic SERVANT Resource Attributes (continued)

VI_ATTR_DEV_STATUS_BYTE This attribute specifies the 488-style status byte of the local
controller associated with this session.

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When the
operational mode is set to VI_FLUSH_WHEN_FULL (default), the
buffer is flushed when an END indicator is written to the buffer
or when the buffer fills up.

If the operational mode is set to VI_FLUSH_ON_ACCESS, the
write buffer is flushed under the same conditions, and also every
time a viPrintf operation completes.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use
DMA (VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this affects
performance and not functionality, that behavior is acceptable.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the
operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush.

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile will overwrite
(truncate) or append when opening a file.

GPIB Specific SERVANT Resource Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of local GPIB controller used by given session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the local GPIB controller used by the given
session.

VI_ATTR_GPIB_REN_STATE Returns the current state of the GPIB REN (Remote ENable)
interface line.

VI_ATTR_GPIB_ADDR_STATE Shows whether the specified GPIB interface is currently
addressed to talk to listen, or to not addressed.

VXI Specific SERVANT Resource Attributes

VI_ATTR_VXI_LA Logical address of the VXI or VME device used by the given
session. For a VME device, the logical address is actually a
pseudo-address in the range 256 to 511.

VI_ATTR_CMDR_LA Logical address of the commander of the VXI device used by
the given session.

Attribute Name Description
416 Appendix B

VISA Resource Classes
Servant Device-Side (SERVANT) Resource
SERVANT Resource Events
This resource defines the following events for communication with
applications, where AP = Access Privilege.

VI_EVENT_CLEAR
Notification that the local controller has been sent a device clear message.

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

TCPIP Specific SERVANT Resource Attributes

VI_ATTR_TCPIP_DEVICE_NAME Specifies the LAN device name used by the VXI-11 protocol
during connection.

Attribute Name Description

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_CLEAR

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

RO ViString N/A
Appendix B 417

VISA Resource Classes
Servant Device-Side (SERVANT) Resource
VI_EVENT_GPIB_TALK
Notification that the GPIB controller has been addressed to talk.

VI_EVENT_GPIB_LISTEN
Notification that the GPIB controller has been addressed to listen.

VI_EVENT_TRIG
Notification that the local controller has been triggered.

VI_EVENT_VXI_VME_SYSRESET
Notification that the VXI/VME SYSRESET* line has been reset.

VI_EVENT_TCPIP_CONNECT
Notification that a TCPIP connection has been made.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
TALK

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
LISTEN

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_SW

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_
VME_SYSRESET

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_
TYPE

Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TCPIP_
CONNECT
418 Appendix B

VISA Resource Classes
Servant Device-Side (SERVANT) Resource
SERVANT Resource Operations
viBufRead(vi, buf, count, retCount)
viBufWrite(vi, buf, count, retCount)
viFlush(vi, mask)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viRead (vi, buf, count, retCount)

viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, fileName, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viSetBuf(vi, mask, size)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)

viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viVScanf(vi, readFmt, params)
viVSPrintf(vi, buf, writeFmt, params)
viVSScanf(vi, buf, readFmt, params)

viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)

VI_ATTR_RECV_
TCPIP_ADDR

The TCPIP address of the
device from which the session
received a connection.

RO ViString N/A

Event Attribute Description AP Data Type Range
Appendix B 419

VISA Resource Classes
TCPIP Socket (SOCKET) Resource
TCPIP Socket (SOCKET) Resource
This section describes the TCPIP Socket (SOCKET) Resource that
encapsulates the operations and properties of the capabilities of a raw
network socket connection using TCPIP.

SOCKET Resource Overview
A VISA SOCKET Resource, like any other resource, starts with the basic
operations and attributes of the VISA Resource Template. For example,
modifying the state of an attribute is done via the operation
viSetAttribute, which is defined in the VISA Resource Template.

Although the TCPIP resource does not have viSetAttribute listed in
its operations, it provides the operation because it is defined in the VISA
Resource Template. From this basic set, each resource adds its specific
operations and attributes that allow it to perform its dedicated task.

The SOCKET Resource exposes the capability of a raw network socket
connection over TCPIP. This ususally means Ethernet, but the protocol is
not restricted to that physical interface. Services are provided to send and
receive blocks of data. If the device is capable of communicating with
488.2-style strings, an attribute setting also allows sending software triggers,
querying a 488-style status byte, and sending a device clear message.

SOCKET Resource Attributes

Attribute Name Access
Privilege

Data Type Range Default

Generic SOCKET Resource Attributes

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_TCPIP VI_INTF_
TCPIP

VI_ATTR_INTF_INST_
NAME

RO Global ViString N/A N/A

VI_ATTR_SEND_END_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_TRUE
420 Appendix B

VISA Resource Classes
TCPIP Socket (SOCKET) Resource
Generic SOCKET Resource Attributes (continued)

VI_ATTR_TERMCHAR RW Local ViUInt8 0 to FFh 0Ah
(linefeed)

VI_ATTR_TERMCHAR_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TMO_VALUE RW Local ViUInt32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE

2000 msec

VI_ATTR_WR_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL

VI_FLUSH_
WHEN_FULL

VI_ATTR_DMA_ALLOW_
EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_RD_BUF_
OPER_MODE

RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_FLUSH_
DISABLE

VI_ATTR_FILE_
APPEND_EN

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_IO_PROT RW Local ViUInt16 VI_NORMAL
VI_PROT_4882_STRS

VI_NORMAL

TCPIP Specific SOCKET Resource Attributes

VI_ATTR_TCPIP_ADDR RO Global ViString N/A N/A

VI_ATTR_TCPIP_HOST
NAME

RO Global ViString N/A N/A

VI_ATTR_TCPIP_PORT RO Global ViUInt16 0 to FFFFh N/A

VI_ATTR_TCPIP_NODE
LAY

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_TCPIP_KEEP
ALIVE

RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

Attribute Name Access
Privilege

Data Type Range Default
Appendix B 421

VISA Resource Classes
TCPIP Socket (SOCKET) Resource
SOCKET Resource Attribute Descriptions

Attribute Name Description

Generic SOCKET Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte of the
buffer.

VI_ATTR_TERMCHAR Termination character. When the termination character is read
and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should terminate
when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout value
of VI_TMO_IMMEDIATE means that operations should never wait
for the device to respond. A timeout value of VI_TMO_INFINITE
disables the timeout mechanism.

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When the
operational mode is set to VI_FLUSH_WHEN_FULL (default), the
buffer is flushed when an END indicator is written to the buffer
or when the buffer fills up.

If the operational mode is set to VI_FLUSH_ON_ACCESS, the
write buffer is flushed under the same conditions, and also every
time a viPrintf operation completes.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use
DMA (VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this affects
performance and not functionality, that behavior is acceptable.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the
operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush.

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile will overwrite
(truncate) or append when opening a file.

VI_ATTR_IO_PROT Specifies which protocol to use.
422 Appendix B

VISA Resource Classes
TCPIP Socket (SOCKET) Resource
SOCKET Resource Event
This resource defines the following events for communication with
applications, where AP = Access Privilege.

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

TCPIP SOCKET Resource Attributes

VI_ATTR_TCPIP_ADDR This is the TCPIP address of the device to which the session is
connected. This string is formatted in dot notation.

VI_ATTR_TCPIP_HOSTNAME Specifies the host name of the device. If no host name is
available, this attribute returns an empty string.

VI_ATTR_TCPIP_PORT Specifies the port number for a given TCPIP address. For a
TCPIP SOCKET resource, this is a required part of the address
string.

VI_ATTR_TCPIP_NODELAY The Nagle algorithm is disabled when this attribute is enabled
(and vice versa). The Nagle algorithm improves network
performance by buffering "send" data until a full-size packet can
be sent. This attribute is enabled by default in VISA to verify that
synchronous writes get flushed immediately.

VI_ATTR_TCPIP_KEEPALIVE An application can request that a TCPIP provider enable the use
of "keep-alive" packets on TCP connections by turning on this
attribute. If a connection is dropped as a result of "keep-alives,"
the error code VI_ERROR_CONN_LOST is returned to current and
subsequent I/O calls on the session.

Attribute Name Description

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed

RO ViJobId N/A
Appendix B 423

VISA Resource Classes
TCPIP Socket (SOCKET) Resource
SOCKET Resource Operations
viAssertTrigger(vi, protocol)
viBufRead(vi, buf, count, retCount)
viBufWrite(vi, buf, count, retCount)
viClear(vi)
viFlush(vi, mask)

viPrintf(vi, writeFmt, arg1, arg2, ...)
viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadSTB(vi, status)
viReadToFile(vi, filename, count, retCount)

viScanf(vi, readFmt, arg1, arg2, ...)
viSetBuf(vi, mask, size)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)

viVScanf(vi, readFmt, params)
viVSPrintf(vi, buf, writeFmt, params)
viVSScanf(vi, buf, readFmt, params)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, filename, count, retCount)

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

RO ViString N/A

Event Attributes Description AP Data Type Range
424 Appendix B

Glossary
425

Glossary

address
A string (or other language construct) that uniquely locates and identifies
a resource. VISA defines an ASCII-based grammar that associates
strings with particular physical devices or interfaces and VISA resources.

ADE
Application Development Environment

API
Application Programmers Interface. The direct interface that an end user
sees when creating an application. The VISA API consists of the sum of
all of the operations, attributes, and events of each of the VISA Resource
Classes.

attribute
A value within a resource that reflects a characteristic of the operational
state of a resource. The operational state of some attributes can be
changed.

bus error
An error that signals failed access to an address. Bus errors occur with
low-level accesses to memory and usually involve hardware with bus
mapping capabilities. For example, non-existent memory, a non-existent
register, or an incorrect device access can cause a bus error.

commander
A device that has the ability to control another device. This term can also
denote the unique device that has sole control over another device (as
with the VXI Commander/Servant hierarchy).

communication channel
The same as Session. A communication path between a software
element and a resource. Every communication channel in VISA is
unique.
426 Glossary

controller
A device, such as a computer, used to communicate with a remote
device, such as an instrument. In the communications between the
controller and the device, the controller is in charge of and controls the
flow of communication (that is, the controller does the addressing
and/or other bus management).

device
An entity that receives commands from a controller. A device can be an
instrument, a computer (acting in a non-controller role), or a peripheral
(such as a plotter or printer). In VISA, the concept of a device is generally
the logical association of several VISA resources.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading to and writing from
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.

handler
A software routine used to respond to an asynchronous event such as an
SRQ or an interrupt.

instrument
A device that accepts some form of stimulus to perform a designated
task, test, or measurement function. Two common forms of stimuli are
message passing and register reads and writes. Other forms include
triggering or varying forms of asynchronous control.

instrument driver
Library of functions for controlling a specific instrument.

interface
A generic term that applies to the connection between devices and
controllers. It includes the communication media and the device/
controller hardware necessary for cross-communication.
Glossary 427

interrupt
An asynchronous event requiring attention out of the normal flow of
control of a program.

mapping
An operation that returns a reference to a specified section of an address
space and makes the specified range of addresses accessible to the
requester. This function is independent of memory allocation.

operation
An action defined by a resource that can be performed on a resource.

process
An operating system component that shares a system's resources. A
multi-process system is a computer system that allows multiple programs
to execute simultaneously, each in a separate process environment. A
single-process system is a computer system that allows only a single
program to execute at a given point in time.

register
An address location that either contains a value that is a function of the
state of hardware or can be written into to cause hardware to perform a
particular action or to enter a particular state. In other words, an address
location that controls and/or monitors hardware.

resource (or resource instance)
An instrument while using VISA. In general, this term is synonymous with
the connotation of the word object in object-oriented architectures. For
VISA, resource more specifically refers to a particular implementation (or
instance in object-oriented terms) of a Resource Class. In VISA, every
defined software module is a resource.

resource class
The definition for how to create a particular resource. In general, this is
synonymous with the connotation of the word class in object-oriented
architectures. For VISA Instrument Control Resource Classes, this refers
to the definition for how to create a resource that controls a particular
capability of a device.
428 Glossary

session
The same as Communication Channel. An instance of a communications
path between a software element and a resource. Every communication
channel in VISA is unique.

SRQ
IEEE-488 Service Request. This is an asynchronous request (an
interrupt) from a remote GPIB device that requires service. A service
request is essentially an interrupt from a remote device. For GPIB, this
amounts to asserting the SRQ line on the GPIB. For VXI, this amounts
to sending the Request for Service True event (REQT).

status byte
A byte of information returned from a remote device that shows the
current state and status of the device. If the device follows IEEE-488
conventions, bit 6 of the status byte indicates if the device is currently
requesting service.

template function
Instrument driver subsystem function common to the majority of
VXIplug&play instrument drivers.

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads with each having
access to the same data space within the process. However, each thread
has its own stack and all threads may execute concurrently with each
other (either on multiple processors, or by time-sharing a single
processor). Note that multi-threaded applications are only supported
with 32-bit VISA.

top-level example
A high-level test-oriented instrument driver function. It is typically
developed from the instrument driver subsystem functions.

VISA
Virtual Instrument Software Architecture. VISA is a common I/O library
where software from different vendors can run together on the same
platform.
Glossary 429

virtual instrument
A name given to the grouping of software modules (in this case, VISA
resources with any associated or required hardware) to give the
functionality of a traditional stand-alone instrument. Within VISA, a
virtual instrument is the logical grouping of any of the VISA resources.
The VISA Instrument Control Resources Organizer serves as a means
to group any number of any type of VISA Instrument Control Resources
within a VISA system.

VISA
Virtual Instrument Software Architecture. This is the general name given
to this document and its associated architecture. The architecture
consists of two main VISA components: the VISA Resource Manager
and the VISA Instrument Control Resources.

VISA instrument control resources
This is the name given to the part of VISA that defines all of the device-
specific resource classes. VISA Instrument Control Resources
encompass all defined device and interface capabilities for direct, low-
level instrument control.

VISA resource manager
This is the name given to the part of VISA that manages resources. This
management includes support for opening, closing, and finding
resources, setting attributes, retrieving attributes, and generating events
on resources, etc.

VISA Resource Template
This is the name given to the part of VISA defines the basic constraints
and interface definition for the creation and use of a VISA resource. All
VISA resources must derive their interface from the definition of the VISA
Resource Template.
430 Glossary

Index

A

addressing devices, 44
addressing device sessions, 44
Agilent telephone numbers, 16
Agilent web site, 16
applications, building, 19
argument length modifier, 52
array size, 53
attributes, 62

setting VXI trigger lines, 125
VXI, 123

B
BACKPLANE resource class, 409
buffers, formatted I/O, 57
building DLLs, 19

C
callbacks and events, 62, 69
closing device sessions, 46
compiling in HP-UX, 35
completion codes, 331
conversion, formatted I/O, 50
copyright information, 10

D
Debug Window, using, 30
declarations file, 41
default resource manager, 41
device sessions

addressing, 44
closing, 46
opening, 42

directories, VISA, 368
directory structure, HP-UX, 369
DLLs, building, 19

E
enable events for callback, 72
enable events for queuing, 78
error codes, 331, 336
error messages, logging, 29
error messages, logging on HP-UX, 35
event handler, 71
Event Viewer, using, 29
events, 62

callback, 62, 69
enable for callback, 72
enable for queuing, 78
handlers, 62
hardware triggers, 62
interrupts, 62
queuing, 62, 77
SRQs, 62
wait on event, 78

examples
Checking for VI_SUCCESS, 82
Checking Instrument Errors, 83
Determining Window Mapping, 124
Enable Hardware Trigger Event, 72, 78
Example Source Code (C/C++), 21
Example Source Code (HP-UX), 33
Example Source Code (VB), 26
Exception Events, 85
Exclusive Lock, 89
GPIB (82350) Interface, 97
GPIB-VXI (E1406A) Interface, 101
GPIB-VXI (HL) Memory, 105
GPIB-VXI (LL) Memory, 111
Installing an Event Handler, 71
LAN Client (Gateway) Interface, 134
LAN Client (LAN) Interface, 135
LAN Server Interface, 140
LAN Session, 142
MEMACC Resource Program, 118
Non-Formatted I/O Functions, 60
Index 431

E (continued)
examples (cont�d)

Opening Device Session, 141
Opening Resource Session, 43
Opening Session, 46
Printing Error Code, 82
Reading a VISA Attribute, 40
Reading Event Attributes, 69
Receive Data From Session, 57
Running Program on HP-UX, 34
Searching VXI Interface, 48
Send/Rec Formatted I/O, 58
SRQ Callback, 74
Trigger Callback, 73
Trigger Event Queuing, 79
Using Array Size Modifier, 53
Using Callback Method, 70
Using Field Width Modifier, 51
Using Precision Modifier, 52
Using Queuing Method, 77
Using viPeek16, 109
VISA LAN Client (Gate), 136
VISA LAN Client (LAN), 138
VXI (E8491B) Interfaces, 98
VXI (High-Level) Memory, 104
VXI (Low-Level) Memory, 109
VXI Memory I/O, 114
Wait on Event for SRQ, 79

F
field width, 51
finding resources, 47
formatted I/O

argument length modifier, 52
array size, 53
buffers, 57
conversion, 50
field width, 51
functions, 49
special characters, 53

F (continued)
functions

formatted I/O, 49
viAssertIntrSignal, 158
viAssertTrigger, 160
viAssertUtilSignal, 163
viBufRead, 165
viBufWrite, 167
viClear, 169
viClose, 171
viDisableEvent, 173
viDiscardEvents, 176
viEnableEvent, 179
viEventHandler, 183
viFindNext, 188
viFindRsrc, 189
viFlush, 194
viGetAttribute, 196
viGpibCommand, 198
viGpibControlATN, 200
viGpibControlREN, 202
viGpibPassControl, 204
viGpibSendIFC, 206
viIn16, 207
viIn32, 207
viIn8, 207
viInstallHandler, 210
viLock, 212
viMapAddress, 216
viMapTrigger, 219
viMemAlloc, 221
viMemFree, 223
viMove, 224
viMoveAsync, 227
viMoveIn16, 231
viMoveIn32, 231
viMoveIn8, 231
viMoveOut16, 234
viMoveOut32, 234
viMoveOut8, 234
viOpen, 237
432 Index

F (continued)
functions (continued)

viOpenDefaultRM, 241
viOut16, 243
viOut32, 243
viOut8, 243
viParseRsrc, 246
viPeek16, 248
viPeek32, 248
viPeek8, 248
viPoke16, 249
viPoke32, 249
viPoke8, 249
viPrintf, 250
viQueryf, 259
viRead, 261
viReadAsync, 264
viReadSTB, 266
viReadToFile, 268
viScanf, 271
viSetAttribute, 281
viSetBuf, 283
viSPrintf, 285
viSScanf, 287
viStatusDesc, 289
viTerminate, 290
viUninstallHandler, 292
viUnlock, 294
viUnmapAddress, 295
viUnmapTrigger, 296
viVPrintf, 298
viVQueryf, 300
viVScanf, 302
viVSPrintf, 304
viVSScanf, 306
viVxiCommandQuery, 308
viWaitOnEvent, 311
viWrite, 317
viWriteAsync, 319
viWriteFromFile, 321

G
Glossary, 426
GPIB Bus Interface resource, 402
GPIB interface overview, 96
GPIB-VXI

attributes, 123
high-level memory functions, 102
low-level memory functions, 107
mapping memory space, 108
overview, 100
register programming, 102, 107
setting trigger lines, 125
writing to registers, 109

H
handlers, 62

event, 71
installing, 70
prototype, 71

hardware triggers and events, 62
header file, visa.h, 41
help

HyperHelp on HP-UX, 36
man pages on HP-UX, 36

high-level memory functions, 102
HP-UX

compiling, 35
directory structure, 369
linking, 35
logging messages, 35
online help, 36

HyperHelp on HP-UX, 36

I
installing handlers, 70
INSTR resource class, 377
Instrument Control resource, 377
interrupts and events, 62
INTFC resource class, 402
introducing IO Libraries, 12
IO interface, definition, 95
IO Libraries, introducing, 12
IP address, 135
Index 433

L
LAN

client/server, 129
GPIB device comm, 141
hardware architecture, 129
interfaces overview, 129
LAN Client, 129, 133
LAN Server, 129, 140
signal handling, 145
software architecture, 131
timeout values, 143
timeouts, 143
VISA LAN Client, 136

libraries, 19
linking, in HP-UX, 35
linking to VISA libraries, 19
locks, using, 87
logging error messages, 29
low-level memory functions, 107

M
man pages on HP-UX, 36
MEMACC
attribute descriptions, 120
resource class, 117, 395
memory functions, 102, 107
memory I/O performance, 112
memory I/O services, 117
memory mapping, 108
memory space, unmapping, 109
Message Viewer, using, 29

N
non-formatted I/O, 59

O
online help, HP-UX, 36
opening sessions, 41

P
printing history, 10

Q
queuing and events, 62, 77

R
raw I/O, 59
register programming

high-level memory, 102
low-level memory, 107
mapping memory space, 108

resource classes, 39, 375
resource manager session, 41
resources

finding, 47
GPIB Bus Interface, 402
Instrument Control, 377
locking, 87
MEMACC, 117
Memory Access, 395
Servant Device-Side, 413
TCPIP Socket, 420
VXI Mainframe Backplane, 409

restricted rights, 9

S
searching for resources, 47
SERVANT resource class, 413
sessions

device, 42
opening, 41
resource manager, 41

SICL-LAN protocol, 132
signal handling with LAN, 145
SOCKET resource class, 420
special characters, 53
SRQs, 62
starting the resource manager, 41
434 Index

T
TCP/IP instrument protocol, 132
TCPIP Socket resource, 420
telephone numbers, Agilent, 16
timeouts, LAN, 143
trademark information, 10
trigger lines, 125
triggers and events, 62
types, VISA, 325

U
unmapping memory space, 109
using the Debug Window, 30
using the Event Viewer, 29
using the Message Viewer, 29

V
viAssertIntrSignal, 158
viAssertTrigger, 160
viAssertUtilSignal, 163
viBufRead, 165
viBufWrite, 167
viClear, 169
viClose, 171
viDisableEvent, 173
viDiscardEvents, 176
viEnableEvent, 179
viEventHandler, 183
viFindNext, 188
viFindRsrc, 189
viFlush, 194
viGetAttribute, 196
viGpibCommand, 198
viGpibControlATN, 200
viGpibControlREN, 202
viGpibPassControl, 204
viGpibSendIFC, 206
viIn16, 207
viIn32, 207
viIn8, 207
viInstallHandler, 210
viLock, 212
viMapAddress, 216

V (continued)
viMapTrigger, 219
viMemAlloc, 221
viMemFree, 223
viMove, 224
viMoveAsync, 227
viMoveIn16, 231
viMoveIn32, 231
viMoveIn8, 231
viMoveOut16, 234
viMoveOut32, 234
viMoveOut8, 234
viOpen, 237
viOpenDefaultRM, 241
viOut16, 243
viOut32, 243
viOut8, 243
viParseRsrc, 246
viPeek16, 248
viPeek32, 248
viPeek8, 248
viPoke16, 249
viPoke32, 249
viPoke8, 249
viPrintf, 250
viQueryf, 259
viRead, 261
viReadAsync, 264
viReadSTB, 266
viReadToFile, 268
VISA

completion codes, 331
description, 15
directories information, 368
documentation, 16
error codes, 331, 336
functions, 149
resource classes, 39
support, 15
types, 325
users, 15
visa.h header file, 41

viScanf, 271
viSetAttribute, 281
viSetBuf, 283
Index 435

V (continued)
viSPrintf, 285
viSScanf, 287
viStatusDesc, 289
viTerminate, 290
viUninstallHandler, 292
viUnlock, 294
viUnmapAddress, 295
viUnmapTrigger, 296
viVPrintf, 298
viVQueryf, 300
viVScanf, 302
viVSPrintf, 304
viVSScanf, 306
viVxiCommandQuery, 308
viWaitOnEvent, 311
viWrite, 317
viWriteAsync, 319
viWriteFromFile, 321
VXI

attributes, 123
device types, 95

high-level memory, 102
interface overview, 98
low-level memory, 107
mapping memory space, 108
MF Backplane resource, 409
performance, 112
register programming, 102, 107
setting trigger lines, 125
writing to registers, 109

VXI-11 protocol, 132

W
wait on event, 78
warranty, 9
web site, Agilent, 16
windows

building applications, 19
building DLLs, 19
linking to VISA libraries, 19

writing to VXI registers, 109
436 Index

	Contents
	Front Matter
	Notice
	Warranty Information
	U.S. Government Restricted Rights
	Trademark Information
	Printing History
	Copyright Information

	Chapter 1 - Introduction
	What’s in This Guide?
	VISA Overview
	Using VISA and SICL
	VISA Support
	VISA Documentation
	Contacting Agilent

	Chapter 2 - Building a VISA Application in Windows
	Building a VISA Program (C/C++)
	Compiling and Linking VISA Programs (C/C++)
	Example VISA Program (C/C++)

	Building a VISA Program (Visual Basic)
	Visual Basic Programming Considerations
	Example VISA Program (Visual Basic)

	Logging Error Messages
	Using the Event Viewer
	Using the Message Viewer
	Using the Debug Window

	Chapter 3 - Building a VISA Application in HP-UX
	Building a VISA Program in HP-UX
	Example Source Code
	Example Program Contents
	Running the Example Program
	Compiling and Linking a VISA Program
	Logging Error Messages

	Using Online Help
	Using the HyperHelp Viewer
	Using HP-UX Manual Pages

	Chapter 4 - Programming with VISA
	VISA Resources and Attributes
	VISA Resources
	VISA Attributes

	Using Sessions
	Including the VISA Declarations File (C/C++)
	Adding the visa32.bas File (Visual Basic)
	Opening a Session
	Addressing a Session
	Closing a Session
	Searching for Resources

	Sending I/O Commands
	Types of I/O
	Using Formatted I/O
	Using Non-Formatted I/O

	Using Events and Handlers
	Events and Attributes
	Using the Callback Method
	Using the Queuing Method

	Trapping Errors
	Trapping Errors
	Exception Events

	Using Locks

	Chapter 5 - Programming via GPIB and VXI
	GPIB and VXI Interfaces Overview
	General Interface Information
	GPIB Interfaces Overview
	VXI Interfaces Overview
	GPIB-VXI Interfaces Overview

	Using High-Level Memory Functions
	Programming the Registers
	High-Level Memory Functions Examples

	Using Low-Level Memory Functions
	Programming the Registers
	Low-Level Memory Functions Examples

	Using Low/High-Level Memory I/O Methods
	Using Low-Level viPeek/viPoke
	Using High-level viIn/viOut
	Using High-level viMoveIn/viMoveOut

	Using the Memory Access Resource
	Memory I/O Services
	MEMACC Attribute Descriptions

	Using VXI-Specific Attributes
	Using the Map Address as a Pointer
	Setting the VXI Trigger Line

	Chapter 6 - Programming via LAN
	LAN Interfaces Overview
	LAN Hardware Architecture
	LAN Software Architecture
	LAN Client Interface Overview
	VISA LAN Client Interface Overview
	LAN Server Interface Overview

	Communicating with GPIB Devices via LAN
	Addressing a Session
	Using Timeouts over LAN
	LAN Signal Handling on HP-UX

	Chapter 7 - VISA Language Reference
	VISA Functions Overview
	VISA Functions by Interface/Resource
	VISA Functions by Type

	viAssertIntrSignal
	viAssertTrigger
	viAssertUtilSignal
	viBufRead
	viBufWrite
	viClear
	viClose
	viDisableEvent
	viDiscardEvents
	viEnableEvent
	viEventHandler
	viFindNext
	viFindRsrc
	viFlush
	viGetAttribute
	viGpibCommand
	viGpibControlATN
	viGpibControlREN
	viGpibPassControl
	viGpibSendIFC
	viIn8, viIn16, and viIn32
	viInstallHandler
	viLock
	viMapAddress
	viMapTrigger
	viMemAlloc
	viMemFree
	viMove
	viMoveAsync
	viMoveIn8, viMoveIn16, and viMoveIn32
	viMoveOut8, viMoveOut16, and viMoveOut32
	viOpen
	viOpenDefaultRM
	viOut8, viOut16, and viOut32
	viParseRsrc
	viPeek8, viPeek16, and viPeek32
	viPoke8, viPoke16, and viPoke32
	viPrintf
	viQueryf
	viRead
	viReadAsync
	viReadSTB
	viReadToFile
	viScanf
	viSetAttribute
	viSetBuf
	viSPrintf
	viSScanf
	viStatusDesc
	viTerminate
	viUninstallHandler
	viUnlock
	viUnmapAddress
	viUnmapTrigger
	viVPrintf
	viVQueryf
	viVScanf
	viVSPrintf
	viVSScanf
	viVxiCommandQuery
	viWaitOnEvent
	viWrite
	viWriteAsync
	viWriteFromFile

	Appendix A - VISA Library Information
	VISA Type Definitions
	VISA Error Codes
	VISA Error Codes (Numerical)
	VISA Error Codes (Alphabetical)
	VISA Error Codes (by Function)

	VISA Directories Information
	Windows Directory Structure
	Editing the VISA Configuration

	Appendix B - VISA Resource Classes
	Resource Classes Overview
	Resource Classes vs. Interface Types
	Interface Types vs. Resource Classes
	Resource Class Descriptions

	Instrument Control (INSTR) Resource
	INSTR Resource Overview
	INSTR Resource Attributes
	INSTR Resource Attribute Descriptions
	INSTR Resource Events
	INSTR Resource Operations

	Memory Access (MEMACC) Resource
	MEMACC Resource Overview
	MEMACC Resource Attributes
	MEMACC Resource Attribute Descriptions
	MEMACC Resource Events
	MEMACC Resource Operations

	GPIB Bus Interface (INTFC) Resource
	INTFC Resource Overview
	INTFC Resource Attributes
	INTFC Resource Attribute Descriptions
	INTFC Resource Events
	INTFC Resource Operations

	VXI Mainframe Backplane (BACKPLANE) Resource
	BACKPLANE Resource Overview
	BACKPLANE Resource Attributes
	BACKPLANE Resource Attribute Descriptions
	BACKPLANE Resource Events
	BACKPLANE Resource Operations

	Servant Device-Side (SERVANT) Resource
	SERVANT Resource Overview
	SERVANT Resource Attributes
	SERVANT Resource Attribute Descriptions
	SERVANT Resource Events
	SERVANT Resource Operations

	TCPIP Socket (SOCKET) Resource
	SOCKET Resource Overview
	SOCKET Resource Attributes
	SOCKET Resource Attribute Descriptions
	SOCKET Resource Event
	SOCKET Resource Operations

	Glossary
	Index

